## 10<sup>th</sup> Winter School on Longitudinal Social Network Analysis

14-16 January 2019 University of Groningen Academy Building

universi

gronin

c.e.g.steglich@rug.nl

#### Co-evolution models for networks and behaviour

- Interdependence of networks and behaviour
- Extension of the stochastic actor-based modelling framework to "behaviour" dimensions
- The case of homogeneity bias / network autocorrelation
- An example: Co-evolution of academic performance & advice seeking
- Notes on the modelling of peer influence





# Interdependence of networks and behaviour





university of groningen

#### Known:

#### Networks can depend on actor characteristics

Three main effect types in <u>directed</u> networks

- "selective mixing" (one effect type, two signs:)
  - assortative (homophily): interaction with similar others can be more rewarding than interaction with dissimilar others
  - disassortative (heterophily/exchange): selection of partners such that they complement own abilities and resources
- "sociality" (two effect types:)
  - popularity (receiver effect): some properties render actors more attractive as receivers of network ties
  - activity (sender effect): other properties may make actors send more network ties





#### New:

#### Actor characteristics can depend on network

Changeable individual characteristics can be affected by other individuals in the network: behaviour proper, but also opinions, attitudes, intentions, etc. – we use the term *"behaviour"* here.

Some examples:

- contagion / assimilation: innovations spreading in a professional community; adolescents adopting friends' attitudes; investment bankers copying behaviour of successful competitors
- differentiation: division of tasks in a connected work team
- effects of centrality or position: special portfolio of connections may lead to behaviour that other actors do not exhibit





#### "Natural matching" of effects in both directions

#### Buying friends with sweets?

- Suppose there exists a mechanism such that the amount of candies a pupil brings to school attracts friendships.
- Over time, this mechanism will lead to a positive association between candies and (in)degree in the friendship network.

Suppose further that in a cross-sectional data collection, we can *measure* this association. Is the mechanism proven?

 No! The same association can also be explained by a mechanism in the other causal direction: a higher number of friends could make a student bring more candies.





#### General point ("conjugate mechanisms")

Any *cross-sectional association* between network features and individual characteristics could come about by at least two *competing dynamic mechanisms*:

- 1. The network feature leads to adjustment of individual characteristics.
- 2. The individual characteristics lead to adjustment of the network feature.

#### <u>Aims:</u>

- Construction of a model that allows a teasing-apart.
- Construction "as simple as possible" (close to existing stochastic, actor-based modelling).





## **Extension of the stochastic** actor-based framework





university of groningen

## "Do as much in analogy as possible"

Stochastic process (X,Z) on the (extended) space of all possible network-behaviour configurations (x,z).

 $2^{n(n-1)}$  states for network x (binary, directed case)

r<sup>n</sup> states for behaviour z (ordinal, finite range r)

State space of (X,Z) has size  $2^{n(n-1)} \times r^n$ .

- Again, the first observation is not modelled but conditioned upon as the process' starting value.
- Discrete change is modelled as occurring in continuous time, but now there are two types of change.





## Actor based approach now in two domains

Network actors drive the process (discrete choice model).

- <u>two</u> domains of decisions:
  - decisions about network neighbours,
  - decisions about own behaviour.
- per decision domain two model parts:
  - When can actor *i* make a decision? (rate functions  $\lambda^{net}$ ,  $\lambda^{beh}$ )
  - Which decision does actor i make? (objective functions f<sup>net</sup>, f<sup>beh</sup>)

By again sampling waiting times and identifying the shortest one, it becomes clear *who* makes *which type* of change.





### Schematic overview of model components

|                       | Timing of decisions                     | Decision rules                                     |
|-----------------------|-----------------------------------------|----------------------------------------------------|
| Network<br>evolution  | Network rate function $\lambda^{net}$   | Network objective function <i>f</i> <sup>net</sup> |
| Behavioural evolution | Behaviour rate function $\lambda^{beh}$ | Behaviour objective function <i>f</i> beh          |

- By simultaneously operating both processes on the same state space (conditionally independent, given the current state), *feedback processes* are instantiated.
- Network change and behaviour change therefore are *controlled for each other*'s parallel occurrence.









## Mini steps assumed in behaviour change

#### Choice options:

(1) increase, (2) decrease, or (3) keep current score on the ordinal behavioural variable, provided the range is not left



#### Choice probabilities:

Analogous to network part: conditionial logit model based on evaluations of options according to behavioural objective function.

#### Explanatory model for behaviour change:

By inclusion of effect statistics in the objective function.





| effect                                               | network statistic                                                             | effective tra                                                                                    | nsitions          | in network*            | verbal description                                                    |
|------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|------------------------|-----------------------------------------------------------------------|
| 1. tendency                                          | z                                                                             | Q                                                                                                | $\leftrightarrow$ | •                      | main behavioral tendency                                              |
| <ol> <li>indegree<br/>× behavior</li> </ol>          | $\mathbf{z}_{i}\sum\nolimits_{j}\mathbf{x}_{ji}$                              | 00                                                                                               | $\leftrightarrow$ | ••                     | effect of own popularity on behavior                                  |
| <ol> <li>outdegree</li> <li>× behavior</li> </ol>    | $\mathbf{z}_{i}\sum_{j}\mathbf{x}_{ij}$                                       | <b>0</b> -0                                                                                      | ↔                 | ●—≎                    | effect of own activity on behavior                                    |
| <ol> <li>dense triads</li> <li>× behavior</li> </ol> | $\mathbf{z}_i \sum\nolimits_{jh} \texttt{group}(ijh)$                         | 250                                                                                              | ⇔                 | 05                     | effect of belonging to cohesive subgroups on behavior                 |
| <ol> <li>peripheral<br/>× behavior</li> </ol>        | $\mathbf{z}_i \sum\nolimits_{jhk} \texttt{peripheral}(i; jhk)$                | 125000                                                                                           | ţ                 | 250                    | effect of being peripheral to cohesive subgroups on<br>behavior       |
| <ol> <li>isolation</li> <li>× behavior</li> </ol>    | $\mathbf{z}_i \text{ isolate}(i)$                                             | ţ<br>ښ                                                                                           | 1                 | ۴                      | effect of being isolated in the network on behavior                   |
| 7. similarity                                        | $\sum_{j} \mathbf{x}_{ij} \sin_{ij}$                                          | o⊶●<br>●—0                                                                                       | 11                | ●—●<br>c—o             | assimilation to friends (contagion / influence)                       |
| 8. similarity<br>× reciprocity                       | $\sum\nolimits_{j} x_{ij} x_{ji}  \text{sim}_{ij}$                            | ;<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | ${\leftarrow}$    |                        | assimilation to reciprocating friends                                 |
| 9. similarity<br>× pop. alter                        | $\sum_j \mathbf{x}_{ij} \sin_{ij} \sum_k \mathbf{x}_{kj}$                     | o_●_o<br>●_oo                                                                                    | 11                | • • • • •<br>• • • • • | assimilation to popular friends                                       |
| 10. similarity<br>× dense triads                     | $\sum\nolimits_{jh} group(ijh)(sim_{ij} + sim_{ih})$                          | 25                                                                                               | ↔                 | 25                     | assimilation to the majority behavior in a cohesive<br>subgroup       |
| 11. similarity<br>× peripheral                       | $ \sum_{jkk} (peripheral(i;jhk) \\ \times (sim_{ij} + sim_{ik} + sim_{ik})) $ | a50-•                                                                                            | $\leftrightarrow$ | 250-0                  | assimilation to those cohesive subgroups one unilaterally attaches to |

TABLE 3 Selection of possible effects for modeling behavioral evolution

\* In the effective transitions illustrations, it is assumed that the behavioral dependent variable is dichotomous and centered at zero; the color coding is **O** = low score (negative), **e** = high score (positive), **O** = arbitrary score. Actor i is the actor who changes color z<sub>i</sub> in the transition indicated by the double arrows. Illustrations are not exhaustive.



Also here,

can be

objective

function...

many effects

formulated for

inclusion in the



#### Equation-based estimation of co-evolution models

Algorithm needs to be modified slightly because the *default equations for 'competing process explanations' are identical* and would imply an unsolvable, collinear system of equations.

<u>Solution:</u> work with *cross-lagged statistics* in the equations!

- Network change in response to prior behaviour,
- behaviour change in response to prior network.

(Likelihood-based estimation does not require such modification.)





#### Estimating equations

When *X*, *Z* are model-based simulated data and *x*, *z* the empirical data, the following statistics are used:

- For parameters in the network objective function:  $S(X,Z) = \sum_{k} \sum_{i} s_{ih}^{net} (X(t_{k+1}), z(t_{k}))$
- For parameters in the behaviour objective function:  $S(\mathbf{X}, \mathbf{Z}) = \sum_{k} \sum_{i} s_{ih}^{beh} (\mathbf{x}(\mathbf{t}_{k}), \mathbf{Z}(\mathbf{t}_{k+1}))$

The estimating equations are  $\mathbf{E}(\mathbf{S}(\mathbf{X},\mathbf{Z})) = \mathbf{S}(\mathbf{x},\mathbf{z})$ everything else remains as in the case of the simple network evolution model.





## An important class of "social influence" applications





university of groningen

## Explaining homogeneity bias

In networks connected actors are often behaviourally more similar than non-connected actors. Technically, this has been termed *homogeneity bias* or *network autocorrelation*.



One measure (implemented in RSiena) is the *network similarity* statistic  $\sum_{j} x_{ij} \sin_{ij}$ , where  $\sin_{ij}$  is a standardised measure of similarity of two actors based on their distance on a variable *z*:

$$sim_{ij} = 1 - \left( \left| z_i - z_j \right| / range_z \right)$$

 $sim_{ij}=1$  means scores of *i* and *j* are identical;  $sim_{ij}=0$  means they are maximally apart (one maximal, the other minimal).





### Competing explanatory stories

<u>A story of network change</u>: Actors base their social relations on similarity in individual features. As a *mini step*:



<u>A story of behaviour change</u>: Actors adjust their behaviour to the behaviour in their social environment. As a *mini step*:







 university of groningen

## Never forget possibility of "confounders"

Notably 'shared context' can lead to both connectivity and individual change:







v university of groningen



## Modelling selection and influence

By including the network similarity statistic  $\sum_{i} x_{ii} \sin_{ii}$ 

... in the *network objective function*, homophilous selection is modelled;

... in the *behaviour objective function*, assimilation / social influence is modelled.

It can be of crucial importance to be able to control one effect for the occurrence of the other – e.g., in the design of "peer-led" social network interventions to reduce risk-taking behaviours at schools.





### ... & what to do about confounders?

Most relevant confounders are probably "shared social contexts".

- $\rightarrow$  Before the study, think about those & make inventory.
- $\rightarrow$  In the study, measure them.
- $\rightarrow$  In the analysis, control for them.

This procedure reduces danger of missing important unobserved confounders.





## An example





university of groningen

### Consider this MBA student data set

- **75 students** enrolled in an MBA program;
- 4 network variables: advice-seeking, communication, friendship, acknowledge-contribution-to-learning;
- co-evolving behavioural dimension: performance in examinations;
- several other actor variables: gender, age, experience, nationality;
- **3 waves** in yearly intervals.

We now focus on the co-evolution of students' *performance* and their *advice seeking* network.











university of groningen

## We expect the following mechanisms

#### Expectation 1: High performers ask less for advice

- Association (negative) between outdegree & performance
- Conjugate process: high outdegree reduces performance

#### Expectation 2: High performers are asked more for advice

- Association (positive) between indegree & performance
- Conjugate process: high indegree increases performance

#### Expectation 3: Processes of homogeneity bias (see earlier)





## Performance part of the estimates

| Effects                                                                                                                                                                                                                        | Advice (restricted)                                                                                                                                               | Advice (full)                                                                                                                                                                                                                                                                                       |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Rate period 1<br>Rate period 2<br>Linear shape<br>Quadratic shape<br>Average similarity<br>Indegree (popularity)<br>Outdegree (activity)<br>Gender<br>Ability<br>Age<br>Work experience<br>Nationality<br>Time since graduatio | 4.123 (0.900)<br>2.647 (0.632)<br>-0.685* (0.293)<br>-0.035 (0.039)<br>10.077* (4.491)<br>0.044* (0.022)<br>0.015 (0.033)<br>-<br>-<br>-<br>-<br>-<br>-<br>n<br>- | $\begin{array}{c} 4.127\ (1.018)\\ 2.685\ (0.583)\\ -0.679^*\ (0.307)\\ -0.037\ (0.048)\\ 9.841^*\ (4.778)\ \text{Ex}\\ 0.044^*\ (0.021)\ \text{Ex}\\ 0.019\ (0.034)\ \text{Ex}\\ 0.015\ (0.165)\\ 0.009\ (0.016)\\ -0.009\ (0.037)\\ -0.001\ (0.005)\\ 0.115\ (0.288)\\ 0.002\ (0.004)\end{array}$ | kp.3 infl.<br>kp.2 conj<br>kp.1 conj |





## Advice seeking part of the estimates (I)

| Effects                    | Advice (restricted) | Advice (FULL)        |
|----------------------------|---------------------|----------------------|
| Rate Period 1              | 9.212 (0.888)       | 9.202 (0.881)        |
| Rate Period 2              | 6.423 (0.537)       | 6.474 (0.586)        |
| Endogenous network effects |                     |                      |
| Outdegree (density)        | -2.473**** (0.125)  | -3.301*** (0.196)    |
| Reciprocity                | 1.065**** (0.127)   | 0.996**** (0.133)    |
| Transitive triplets        | 0.261**** (0.031)   | 0.249*** (0.030)     |
| 3-cycles                   | -0.030 (0.066)      | -0.018 (0.064)       |
| Betweenness                | $-0.035^{+}(0.019)$ | -0.044 (0.018)       |
| Indegree – Popularity      | 0.019*** (0.003)    | 0.258*** (0.051)     |
| Exogenous network effects  |                     |                      |
| Friendship                 | 0.972***(0.091)     | 0.945*** (0.091)     |
| Advice                     | -                   | -                    |
| Control covariates effects |                     |                      |
| Gender (M) alter           | -                   | -0.069 (0.096)       |
| Gender (M) ego             | _                   | $-0.239^{**}(0.094)$ |
| Same Gender (M)            | _                   | 0.094 (0.088)        |





/ university of
 groningen

## Advice seeking part of the estimates (II)

| Effects                                    | Advice (restricted) | Advice (FULL)       |         |
|--------------------------------------------|---------------------|---------------------|---------|
| Ability similarity                         | -                   | 0.249 (0.175)       |         |
| Age alter                                  | _                   | -0.024 (0.018)      |         |
| Age ego                                    | _                   | -0.011 (0.019)      |         |
| Age similarity                             | _                   | 0.113 (0.299)       |         |
| Same academic background                   | -                   | 0.262** (0.079)     |         |
| Work experience alter                      | -                   | 0.002 (0.003)       |         |
| Work experience ego                        | -                   | 0.001 (0.003)       |         |
| Work experience similarity                 | -                   | -0.249 (0.468)      |         |
| Same nationality                           | _                   | 0.444**** (0.122)   |         |
| Time since graduation alter                | -                   | 0.002 (0.003)       |         |
| Time since graduation ego                  | _                   | 0.004* (0.002)      |         |
| Time since graduation similarity           | -                   | 0.303 (0.286)       |         |
| Performance feedback effects               |                     |                     |         |
| Performance alter                          | _                   | 0.156" (0.055)      | Exp.2   |
| Performance ego                            | _                   | $-0.090^{+}(0.055)$ | Exp.1   |
| <ul> <li>Performance similarity</li> </ul> | -                   | 1.424* (0.657)      | Exp.3 s |





## Two more remarks on stochastic actor-based influence modelling





university of groningen

## (1) Always consider distribution of behaviour!

Peer influence doesn't necessarily mean "connected people becoming / staying more similar over time"

 For strongly skewed variables, peer influence may even coincide with connected people becoming less similar.

<u>Example:</u> When entering secondary school, students initially are all non-delinquent, i.e., perfectly similar. Any subsequent movement implies a reduction of similarity.

 In such cases, the *similarity based* measures can be *wrong* specifications of peer influence!

*Correlational measures may be the better choice here; see Knecht et al. (Social Development, 2010) & following slides.* 





Illustration: a very skewed distribution...







... plus a trend of over time can imply similarity decrease.

delinquency dynamics (unit: actor)

If the dynamic process starts with perfect similarity ("nobody delinquent") it can only get <u>less</u> similar from there on...





*Here, a <u>correlational</u> measure for social influence is better operationalisation than a <u>distance-based</u> one.* 







## Message of this:

- "Influence" is <u>not</u> unequivocally tied to one specific operationalisation!
- It is <u>not always</u> about "similarity" sometimes "alignment" / "association" is the better way to phrase it – and sometimes it is a "connectedness" issue.
- <u>Always</u> take a close look at your data set to find out what makes sense in your context.
- In the stochastic actor-based framework, goodness of fit tests (score type) facilitate the technical part of decision making – but doesn't substitute thought!





## (2) Comparison over decision domains?

- To what degree are performance of advice giver and advice recipient associated?
- Indicator Moran's autocorrelation:

$$I = \frac{n \sum_{ij} x_{ij} (z_i - \overline{z}) (z_j - \overline{z})}{\left(\sum_{ij} x_{ij}\right) \left(\sum_{i} (z_i - \overline{z})^2\right)}$$

 Compared are (partially) nested models including these components: T rend (rewiring, perf. drift, etc.)
 C ontrol (sex, experience, etc.)
 S election (homophily, etc.)
 I nfluence (assimilation, etc.)



university of groningen



#### Pie chart diagrams based on these violin plots

The issue of <u>comparing the strength</u> of influence and selection requires a common metric for comparison, e.g. *network autocorrelation coefficients* (here: Moran's I).



Steglich, Snijders & Pearson, 2010. Dynamic Networks and Behavior: Separating Selection from Influence. *Sociological Methodology* 40: 329-393.





#### c.e.g.steglich@rug.nl

#### https://steglich.gmw.rug.nl





university of groningen