
10th Winter School on 
Longitudinal Social 
Network Analysis

14-16 January 2019
University of Groningen

Academy Building

c.e.g.steglich@rug.nl



Network dynamics: basic issues

Why? 

& 

How?



Why model network dynamics?

• Research often starts as a question about associations 
between network features and individual features…

• Do popular students engage in risky behaviours?

• Do South Europeans have more friends than North 
Europeans?

• … or between network features and dyadic features.
• Do students ethnically segregate in school?

• Do students with protective parents tend to be friends 
with risk-taking peers?

• Any such association begs the question of “Why?” …



Explanatory mechanisms are of a dynamic nature

Competing explanations are the rule:
Do students ethnically segregate in friendship networks…

1. … because they prefer their own ethnic group?
2. … because they prefer ties to students living in their 

neighbourhood, and there is residential segregation?
3. … because inter-ethnic ties break up more quickly?

These explanations invoke dynamic mechanisms:
1. Same ethnicity precedes tie formation.
2. Geographic proximity precedes tie formation.
3. Same ethnicity precludes tie dissolution.



How to model network dynamics?

Ultimate criterion: “Such that you can tell which of the 
competing mechanisms can account for the data.”

– Statistical approach needed to control different effects for 
each other

– Longitudinal approach needed to link antecedents to 
consequences

– Sociocentric network approach needed because 
conceptually, selection can only be studied when the 
complete pool of candidates is known

Statistics & non-independent data: specialised models! 





Basic framework for stochastic network models

It is assumed that networks are random variables X with a 
(typically complex) probability distribution.

An observed network x is assumed to be drawn from the 
space X of all possible networks according to this 
distribution.

This distribution ...
… can be formalized in a parametric model,
… can at least be simulated (e.g., by MCMC techniques),
… and therefore be used for hypothesis testing. 



The network space is huge!

For an undirected, binary network among n actors, how 
many networks are possible?
 For each dyad (i,j) there are two possibilities:  xij=0 or xij=1.

 There are              dyads that can be combined in any way.

 So in total, there are |X|= networks possible.

( 1)
2

n n

( 1)/22n n

n 1 2 3 4 5 … 10 …

|X| 1 2 8 64 1024 … ~35 trillion …

etc.



The stochastic, actor-based 
framework
Model assumptions
Data format considerations
The network evolution algorithm
Model specification, selection of effects



Model assumption #1: Actor-basedness

Social actors are the locus of modelling
– change is due to actors’ decisions*; 
– actors control “their” (i.e., outgoing) network ties.

Two basic actor-level model components
– When can an actor make a decision? (rate function)
– Which decision does the actor make? (objective function)

[* assumption: Luce’s (1959) “independence of irrelevant 
alternatives” axiom, or, equivalently, Yellot’s (1977) weaker 
“invariance with uniform expansion” criterion.]



Model assumption #2: Decomposability

Subsequent discrete-time* observations are assumed to be 
related through an unobserved continuous-time process of 
change on X.

These changes are as small as possible (‘mini steps’).

Complex observed change patterns thus are assumed to be 
decomposable into a mini step sequence of many smallest-
possible unobserved changes. 

[*Fully observed continuous-time data can in principle be analysed
with standard statistical software, but this requires considerable 
data organization skills.]



What are smallest possible changes?

• Changes between two networks that differ by just one tie 
variable, while all others are identical.
– Example directed network:

– Example undirected network:

Terminology: these networks differ by a “mini step”.



Mini steps and locus of control

A mini step involves uniquely identified actors – these are 
assumed to control & decide about the tie variable:

– Directed network: ONE actor

– Undirected network: TWO actors

A mini step is therefore simpler to model, in an actor-based way, 
in the directed case. We here present only this simpler case.



Data requirements

Required are repeated measures of the same network

– same definition of the network boundary
(same group of actors, but some composition change is allowed)

– same relational variable.
(more requirements to follow)



Example data: (Andrea Knecht, 2003/04)

Networks among first grade pupils at Dutch secondary 
schools (“bridge class”).

125 school classes

4 measurement points, 

various network & individual measures.

The following slides show the evolution of the friendship 
network in one classroom.

The graph layout is a bit messy for each observation alone, but
optimal over time according to a stress minimisation algorithm.



1st wave: August/September 2003
Node size indicates strength of delinquency...



2nd wave: November/December 2003
... and node node colour indicates sex.



3rd wave: February/March 2004
Dynamic layout algorithms can be used to...



4th wave: May/June 2004
... animate the data in a movie.



Points to consider before trying actor-based models

change  stability

The networks should change ‘slowly’, contain a stable part.
Rules for structural change typically are about 
individual ties changing in response to surrounding 
ties (which remain stable, for that moment).  

states  events
NOT snapshots of e-mail traffic, BUT reliable measures of a 
slowly-changing social relation.
Event networks could be aggregated over (ideally: non-overlapping) 
time windows to obtain ‘state-type’ networks.



Quantifying stability & change between two observations

Hamming distance H = n01 + n10

number of observed changes; 
indicates minimum number of mini 
steps needed to reach the second 
network from the first ( power).

Jaccard index J = n11 / (n11 + n01 + n10)
percentage of ties observed twice 
among ties that were observed at  
least once; indicates stability 

(<0.1: very problematic; >0.3 safe)
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Data format issues to consider

binary  signed  valued
directed  undirected
tie loss possible  growth only networks
one-mode  two-mode / bipartite / affiliation-type
single dependent  multiplex

The standard model is developed for a single dependent, 
binary, directed, one-mode network that can both grow and 
shrink over time.

Everything else is a non-standard model extension, and not 
necessarily supported by the software implementation. 



Modelling principles for such data sets

Random walk: Network evolution proceeds as a stochastic process on 
the space X of all possible networks.

No contamination by the past: The first observation is not modelled
but conditioned upon as the process’ starting value.

Continuous-time model: Change is modelled as occurring in 
continuous time.

Mini steps: Big change from one observation to the next is assumed to 
accrue from a sequence of smallest possible changes.

The assumption of temporal decomposability / separability is quite 
a strong one, but crucial for statistical power!



The network evolution algorithm

Network evolution in observation period t0  t1 takes place as in 
this straight simulation algorithm:

1. Model time is set to t = t0 , and simulation starts out at the 
network observed at this time point. 

2. For each actor, a waiting time is sampled according to the actor’s 
rate function.

3. The actor with the shortest waiting time t is identified.
4. If  t + t > t1 , the simulation terminates.
5. Otherwise, the identified actor gets the opportunity to set a mini 

step. This step is determined by the actor’s objective function.
6. Model time is updated and simulation proceeds at step 2.



The rate function

• Models speed differences between actors i .

• Statistics rik of i’s neighbourhood in x are weighted by model 
parameters rk .

• These weights express whether the feature expressed in the statistic
is related to more frequent (rk>0) or less frequent (rk<0) network
changes by the actors.

• They are estimated from the data.

Technically, li is parameter of an exponential
distribution of waiting times – as in Poisson regression.

Typically, it is good to start an analysis under the
assumption of a periodwise constant rate function.

l  ri k ikk
(x) r (x)



The objective function

• Models attractiveness of network states x to actor i .

• Statistics sik of i’s neighbourhood in x are weighted by model 
parameters bk .

• These weights express whether the feature expressed in the statistic 
is desired (bk>0) or averted (bk<0).

• Also they are estimated from the data.

Technically, fi(x) is parameter of a conditional logit 
model for discrete, probabilistic choice.

The objective function is the main part of modelling.
Here, hypotheses typically are operationalised.

 bi k ikk
f (x) s (x)



Some effect statistics

reciprocity effect

transitivity effect

Effects’ parameters b indicate the attractiveness difference for the focal 
actor i between the configurations depicted on the right and on the left.

 i  recip. ij jij
s x x

i ij j

i i

j j

k k

i  tr.trip. ij jk ikjk
s x x x 

Most often, 

effect statistics 

are subgraph 

counts.



Many other

effects are 

possible to include

in the objective

function (consult 

RSiena manual for

what is currently

possible)…



Choice probabilities

• Choice probabilities for mini steps are proportional to the 
exponential function of the objective function.

• Valid options are all possible mini steps, plus the option not to 
change the status quo.

• This probability distribution can be interpreted as optimisation 
of a random utility function, namely the objective function  fi

plus a Gumbel-distributed error term.

• Note that the probabilities only depend on x' and not on past 
states, not even x . This can be relaxed while keeping the 
Markov property (keyword: creation & maintenance functions).

Pr( ) exp( ( ))i ix x f x  



Illustration of “how a mini step works”

Assume that a model specification with the following 
objective function parameters was estimated on a classroom 
friendship network:

– outdegree boutdg.= -2.6 friendship is rare

– reciprocity brecip.  = 1.8 friendship is reciprocal

– transitivity btr.trip.= 0.4 friendship shows clustering

– three-cycles b3-cycl.= -0.7 friendship shows hierarchy

– same gender bsame = 0.8 friendship is sex segregated



Example of an actor’s decision

focal actor
(ego)

alter 1

alter 2
alter 3

alter 4 alter 5

alter 6

alter 7
Ego’s choice options:

• drop tie to alter 1
• drop tie to alter 2
• drop tie to alter 3
• create tie to alter 4
• create tie to alter 5
• create tie to alter 6
• create tie to alter 7
• keep status quo



Count model-relevant subgraphs for all options

ego
alter 1

alter 2
alter 3

alter 4 alter 5

alter 6

alter 7

Keep status quo

• 3 outgoing ties
• 2 reciprocated ties
• 2 transitive triplets
• 2 three-cycles
• 0 same gender ties



Count model-relevant subgraphs for all options

ego
alter 1

alter 2
alter 3

alter 4 alter 5

alter 6

alter 7

Drop tie to alter 1

• 2 outgoing ties
• 1 reciprocated tie
• 0 transitive triplets
• 1 three-cycles
• 0 same gender ties



Count model-relevant subgraphs for all options

ego
alter 1

alter 2
alter 3

alter 4 alter 5

alter 6

alter 7

Create tie to  alter 4

• 4 outgoing ties
• 3 reciprocated ties
• 2 transitive triplets
• 2 three-cycles
• 1 same gender tie

…these calculations are 
done for all the eligible 
options.



Option # out-ties # recip. ties # tr.triplets # 3-cycles # same sex

drop tie to 
alter 1 2 1 0 1 0

drop tie to 
alter 2 2 1 0 1 0

drop tie to 
alter 3 2 2 2 2 0

create tie to 
alter 4 4 3 2 2 1

create tie to 
alter 5 4 2 2 3 0

create tie to 
alter 6 4 2 2 3 1

create tie to 
alter 7 4 2 2 3 1

keep status 
quo 3 2 2 2 0

Result: a decision matrix of options by attributes



Option # out-ties # recip. ties # tr.triplets # 3-cycles # same col.

drop tie to 
alter 1 2 1 0 1 0

drop tie to 
alter 2 2 1 0 1 0

drop tie to 
alter 3 2 2 2 2 0

create tie 
to alter 4 4 3 2 2 1

create tie 
to alter 5 4 2 2 3 0

create tie 
to alter 6 4 2 2 3 1

create tie 
to alter 7 4 2 2 3 1

keep 
status quo 3 2 2 2 0

Calculation of objective function values:

Matrix Sego

boutdg.

brecip.

btr.trip.

b3-cycles

bsame

fdrop-1

fdrop-2

fdrop-3

fcreate-4

fcreate-5

fcreate-6

fcreate-7

fstat.quo

=



Option objective 
function

exponential 
transform probability

drop tie to 
alter 1 -4.1 0.017 10%

drop tie to 
alter 2 -4.1 0.017 10%

drop tie to 
alter 3 -2.2 0.111 68%

create tie to 
alter 4 -4.8 0.008 5%

create tie to 
alter 5 -8.1 0.000 0%

create tie to 
alter 6 -7.3 0.001 0%

create tie to 
alter 7 -7.3 0.001 0%

keep status 
quo -4.8 0.008 5%

ego
alter 1

alter 2
alter 3

alter 4 alter 5

alter 6

alter 7

Dropping the tie to alter 3 clearly 
dominates this decision situation.

Note: RSiena internally centers 
many variables – this does not 
affect the choice probabilities.



Homogeneity assumptions

Unless otherwise specified (by including interaction terms 
with nuancing variables), the model assumes…

Actor homogeneity: 

All actors follow the same behavioural rules in their 
networking activities.

Time homogeneity: 

These behavioural rules do not change over time.

This can be problematic whenever actors or time periods are 
heterogeneous but there are no predictors for differences in 
the data. So: check this in your models!



Model specification / effect selection

When investigating social network dynamics, researchers ususally 
do not come empty-handed but have theories or (at least) 
hypotheses about the mechanisms that might operate.
• These mechanisms [hopefully] can be expressed in terms of 

SIENA parameters, and the hypotheses can be restated in terms 
of the corresponding model parameters.

• By estimating the parameters and calculating significance tests 
for them, the theories / hypotheses can be tested empirically.

But... how do parameters & hypotheses relate to each other?



Local characterisation of choice probabilities

• For two networks that could be obtained in competing 
mini steps from the same network of origin, the ratio of 
choice probabilities is this (“odds”):

 
1

Pr( )
exp ( ) ( )

Pr( )

c a K
a bi

k ik ikc b
ki

x x
s x s x

x x
b



 
     



difference in model statistics 
of actor i between the two 
compared moves

compared are two moves (‘mini steps’) made 
by actor i from a network xc  to two 
“neighbouring networks” xa and xb

model 
parameters



The main part of the formula in detail:

The sum determines whether xa or xb

is more likely to succeed xc in the network evolution process.

bk positive: states with higher scores sik are more likely

than states with lower scores; 

bk negative: states with lower scores sik are more likely

than states with higher scores.

This way, parameter values bk express dynamic tendencies of network 
evolution: “actors are moving towards a high [low] score on the 
corresponding network statistic s.k ”

 
1

( ) ( )
K

a b
k ik ik

k

s x s xb






Examples

Advice seeking among MBA students

Friendship of adolescents in a classroom



First example (Torlò, Steglich, Lomi & Snijders, 2007)

• 75 students enrolled in an MBA program;

• 4 network variables: advice-seeking, communication, friendship, 
acknowledge-contribution-to-learning;

• co-evolving behavioural dimension: performance in examinations;

• several other actor variables: gender, age, experience, nationality;

• 3 waves in yearly intervals.

We focus here on the analysis of the evolution of
the advice network only.

Which hypotheses are investigated? [just 3 of them…]



1. You seek advice from your friends.

Mechanism: presence of a friendship tie between two actors 
increases the likelihood that an advice tie is present 
between the same actors.

If xij stands for i seeking advice from j and 
wij stands for i naming j as a friend, then the effect

operationalises the above mechanism, and the cor-
responding parameter bfriend can be used to test it.

 friend ( )i ij ijj
s x x w 



• The effect statistic si friend counts the degree to which advice
seeking and friendship ‘overlap’. 

• The parameter bfriend expresses whether by changing the advice 
network, such an overlap is sought or avoided, i.e., whether 
friendship enhances or weakens advice seeking: 
bfriend positive: advice seeking is more likely when it

coincides with friendship;
bfriend negative: advice seeking is less likely when it

coincides with friendship.
• In SIENA, the effect can be included as main effect of a dyadic 

covariate (friendship) on network evolution.

Hypothesis 1: bfriend > 0 ; test the null hypothesis bfriend = 0 . 







2. The lower your performance, the more advice you need 
[and the more you will seek].

Mechanism: actors with low performance scores are likely to 
have more outgoing advice ties than actors with high 
performance scores.

If zi stands for performance of actor i, then the
effect

operationalises the above mechanism, and the
parameter bown-performance can be used to test it.

 own-performance( )i i ijj
s x z x 



• The effect statistic si own-performance counts the degree to which 
active advice seeking and performance coincide. 

• The parameter bown-performance expresses whether by changing 
the advice network, such an coincidence is sought or avoided, 
i.e., whether own performance enhances or weakens advice 
seeking: 
bown-performance positive:  high performers seek more

advice than low performers;
bown-performance negative: high performers seek less 

advice than low performers.
• In SIENA, the effect can be included as an ego-effect of an actor 

variable (performance) on network evolution.

Hypothesis 2: bown-p. < 0 ; test the null hypothesis bown-p. = 0 .







3. The higher your performance, the better the advice you can 
give [and the more you will be asked for advice].

Mechanism: actors with high performance scores are likely 
to attract more incoming advice ties than actors with 
low performance scores.

Let zj now stand for performance of actor j, then
effect

operationalises the above mechanism, and the
parameter bothers-performance can be used to test it.

 others-performance( )i j ijj
s x z x 



• The effect statistic si others-performance counts the degree to which 
passive advice seeking (‘being asked’) and performance 
coincide. 

• The parameter bothers-performance expresses whether by changing 
the advice network, such a coincidence is sought or avoided, 
i.e., whether others’ performance makes them more or less 
attractive as sources of advice: 
bothers-perf. positive:  high performers are more often

asked for advice than low p’fs.;
bothers-perf. negative: high performers are less often

asked for advice that low p’fs.
• In SIENA, this is the alter-effect of an actor variable. 

Hypothesis 3: both-p. > 0 ; test the null hypothesis both-p. = 0 .







Significance testing of parameters

• The RSiena software estimates parameters bk and their 
standard errors  st.err.(bk) . 

• By calculating the standard score of those, parameter 
significance can be tested:

bk /st.err.(bk)  
• is approximately normally distributed*

• under the assumption (null hypothesis) that actual network 
evolution follows a model in which the parameter is 
constrained to zero (H0: bk =0).

* Thus far, this claim largely rests on extensive simulation studies.



Results for these particular hypotheses

Dependent network: Advice       Estimate  St.Error conv.  pred.?

------------------------------------------------------------------

1. eval outdegree (density)     -2.6541  (0.0890)  0.0131

2. eval reciprocity              0.9973  (0.1231) -0.0307

3. eval transitive triplets      0.2781  (0.0291) -0.0246

4. eval 3-cycles                -0.1199  (0.0534) -0.0362

5. eval indegree - popularity    0.0410  (0.0055) -0.0368

6. eval friendship               1.0230  (0.0823) -0.0324    

7. eval same background          0.1661  (0.0726) -0.0311

8. eval same experience          0.1174  (0.0757) -0.0704

9. eval performance alter        0.1035  (0.0272) -0.0643    
10. eval performance ego         -0.0840  (0.0256) -0.0564    

11. eval performance similarity   0.8371  (0.3044) -0.0358



More specifically: tests & p-values

Hypothesis 1:  “You seek advice from your friends.”

standard score  = 1.0230 / 0.0823 = 12.4 ;    p < 0.001

Hypothesis 2:  “The lower your performance, the more advice 
you seek.” 

standard score = -0.0840 / 0.0256 = -3.28 ;     p = 0.001

Hypothesis 3: “The higher your performance, the more others 
ask you for advice.”

standard score = 0.1035 / 0.0272 = 3.81 ;     p < 0.001

All three hypotheses are confirmed!



Second example: A classroom friendship network 

boys

girls

Aug-Sep 2003

Nov-Dec 2003



Analyse this network the lab

• … making use of the following effects:
• outdegree (density),
• reciprocity,
• transitive triplets,
• an interaction effect of the two preceding ones,
• gender effects of sender and receiver,
• a gender homophily effect.

• (see exercise on segregation & homophily).



Results of classroom data lab exercise

Rate function friendship

Rate of change  t1  t2 (0,97) (1,31) 10,87 (2,63)

Rate of change  t2  t3 (0,45) (0,50) 3,04 (0,52)

Rate of change  t3  t4 (0,49) (0,54) 3,80 (0,65)

Objective function friendship

Outdegree (0,17) *** (0,16) *** -2,19 (0,16) ***

Reciprocity (0,16) *** 0,84 (0,17) ***

Transitive triplets 0,18 (0,03) ***

primary school friendship (0,21) * (0,21) 0,40 (0,20) *

Male alter (0,18) (0,18) 0,05 (0,17)

Male ego (0,19) (0,19) -0,17 (0,18)

Same sex (0,18) *** (0,18) *** 0,93 (0,18) ***

-2,03

3,56

2,92

8,81

1,39

0,07

0,28

0,30

—

1,09

0,11

1,70

0,54

0,30

—

—

-1,92

2,73

3,29

7,54

    Model 1     Model 2     Model 3

‘significantly 
biased’



On estimation & goodness of fit



Model estimation by estimating equations

For each model parameter . …
whether part of the rate or of the objective function doesn’t matter

• a statistic S. is identified that can be evaluated on a data 
set y (e.g. the observed data x or draws from the probability model 
X of these data, i.e., simulated by straight simulation)

• this statistic defines an estimating equation for its 
parameter: “Expected value over simulations must equal the 
observed value.”

The vector  of parameter estimates is obtained as the joint 
solution to the corresponding system of equations.



Simulations under Estimating Equations algorithm

• Observed data are met in expectation over simulations, on a 
vector of k statistics corresponding to the k model parameters 
(Snijders, 1996, Journal of Mathematical Sociology).

• Trajectories are sampled by straight simulations.



Estimating statistics used

• Basic rate parameter period m:

Estimating statistic:

• Objective function parameters:

Estimating statistic:

Estimating equations (for all parameters): 

 m l

  1( ) ( ) ( )ij m ij mij
S y y t x t

 h b

   1( ) ( ( ))ih kk i
S y s y t

 ( ( )) ( )E S X S x



Conditional estimation with estimating equations 

• It can be useful to not estimate the rate parameter 
(modelling the observed amount of network change):
– Can improve model convergence

– Focus often is not on rate of change anyway

• Then, the straight simulation algorithm needs to be 
slightly modified:
– Stopping rule is not any more “model time exceeds period 

end time”…

– …but becomes “Hamming distance in simulations reaches 
observed Hamming distance”



Parameter updating based on simulations

• Parameters are iteratively updated according to the rule

where…
– D0 is the approximation of the derivative matrix of statistics S by 

parameters , evaluated at the parameter’s starting value 0

– ak is a sequence of numbers that approach zero at rate k−c

– c is chosen (0.5 < c < 1) so as to obtain good convergence 
properties.

• The final parameter estimate      is the tail average

1 sim obs
1 1 0

ˆ ˆ ( )
   k k k kaθ θ D SS

1

1 ˆ
N

k r
rN 


θθ̂



Estimation of covariance structure

• The approximative covariance matrix of the estimator 
function, evaluated at the estimate, is given by

where…
– again is an approximation of the derivative matrix of statistics 

S by parameters , now evaluated at the estimate    , 

– is the matrix of covariance of the simulated vector S of 
estimation statistics, also evaluated at the estimate.

• Standard errors of the estimates are calculated as the 
square roots of the diagonal elements of this matrix.

  1
ˆ ˆ ˆ ˆcov ( ) ( )D S D
   



 ˆ ( )S


ˆD


̂



Model estimation by MCMC maximum likelihood

ML estimation requires approximation of the likelihood of 
the data, therefore…
• Straight simulation inappropriate (typically doesn’t end up in 

the observed data set)

• Needed: construction of model-consistent distribution of 
simulated network evolution trajectories that connect observed 
data points

• Is achieved by MCMC techniques (Snijders, Koskinen & 
Schweinberger, 2010, Annals of Applied Statistics)



Simulations under Likelihood-based algorithms

• Observed data are met exactly. 

• Connecting trajectories are sampled from the model by MCMC 
technique (Snijders, Koskinen & Schweinberger, 2010, Annals of 
Applied Statistics).



When to use ML estimation?

Pro:
• Makes more efficient use of available information

• Therefore has higher statistical power

• Relevant for datasets that have low information content 
already (many missings, little change, small size,…)

Contra:
• Takes considerably more time

Recommendation:
• Use it only when estimating equations gives problems



Convergence and goodness of fit checking

What is “goodness of fit” for stochastic network models?

• Simulate many networks from the estimated model, and see 
how well these simulated networks replicate statistics of the 
data that were not part of the model.

Since long (since StOCNET): use of convergence indicator

These standard scores are practically zero for estimating statistics 
(by definition of the estimating algorithm). They should not be too
different from zero (ideally n.s.) for other important fit statistics.

E(simulated values) observed value
st.dev.(simulated values)





Since a while available in RSiena: ‘violin plots’

Shows more detail than just a 
collection of standard scores
• red solid line shows observed 

values, 
• boxplots & violins show 

distribution of simulated 
values,

• p-value is based on 
Mahalanobis’ distance from 
centre of simulations.

Examples will be elaborated 
in a lab exercise.

S
ta

tis
tic

1 2 3 4 5 6 7 8

338

577

770

913
1030

1128
1195 1243

Goodness of Fit of GeodesicDistribution

p: 0.623

4 5



S
ta

tis
tic

1 2 3 4 5 6 7 8

708

1999

2456

1641

861

331

122
6

S
ta

tis
tic

0 1 2 3 4 5 6 7 8 9 10 11 12

23

16

24

21

16

5

12

7

5

3

1

6

1

S
ta

tis
tic

0 1 2 3 4 5 6 7 8 9 10 11 12

2

16

19

24

22

20

13
12

5 5 5

1
2

S
ta

tis
tic

 (c
e

nt
er

ed
 a

nd
 s

ca
le

d)

003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U 120C 210 300

97832 25648 6291

651

1586 842

989

414

230 7 151

160

69

68

88 24

Goodness of fit plots & Mahalanobis distance p-value

outdegrees
p=0.9332

indegrees
p=0.2292

triad census
p=0.2636

geodesics
p=0.3148

Plots belong to the MBA advice seeking example above.
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