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The issues

• Why model network dynamics?

• And how? What must we pay attention to?

Outline: Methodological concerns & strategy, …
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The stochastic actor-based framework

• What is the modelling strategy?

• What data sets can be analysed?

• Which model assumptions are made?
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Fitting models to data

• How are models estimated?

• How are hypotheses tested?

… statistical aspects & applications (w/ software).
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Examples

• Advice seeking among MBA students (Lomi, Torlò et al.)

• Sex segregation in secondary schools (Steglich & Knecht)

• Hierarchies in friendship networks

• Preferential trade agreements (Manger, Pickup & Snijders)

Notes on interpretation, goodness of fit, …
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Why model network dynamics?

› Research often starts as a question about associations 
between network features and individual features…

• Do popular students smoke?

• Are nations with high income levels more central in 
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• Are nations with high income levels more central in 
preferential trade agreement networks?

› … or between network features and dyadic features.

• Do students ethnically segregate in school?

• Do non-democratic countries trade with each other?

› Any such association begs the question of “Why?”…
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Explanatory mechanisms typically are dynamic

› Competing explanations are the rule:

• Do students ethnically segregate…

… because they prefer their own ethnic group?

… or because they prefer ties to students living close by 
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… or because they prefer ties to students living close by 
(& there is residential segregation)?

… or because inter-ethnic ties break up more quickly?

› These explanations invoke dynamic mechanisms:

… same ethnicity precedes tie formation;

… geographic proximity precedes tie formation;

… same ethnicity precludes tie dissolution.
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How to model network dynamics?

› Ultimate criterion: “Such that you can tell which of the 
competing mechanisms is consistent with the data.”

• Statistical approach needed to control different effects for 
each other
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each other

• Longitudinal approach needed to link antecedents to 
consequences

• Complete network approach needed because 
conceptually, selection can only be studied when the 
complete pool of candidates is known

�Statistics & non-independent data: specialised models! 

�
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Actor-based models for network evolution

› Modelling strategy

› Data format considerations

› Model assumptions

Statistical Analysis of Social Networks 7

› Model assumptions

› The network evolution algorithm

› Model specification, selection of effects
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Modelling strategy

Conceptually: Actor-driven model.

Actors are the locus of modelling, change is due to individual 

decisions. [Assumption: Luce’s (1959) choice axioms.]

• actors control “their” network ties;
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• actors control “their” network ties;

• two submodels:

• When can actor imake a decision? (rate function)

• Which decision does actor i make? (objective function)

Technically: Continuous time Markov process.

Assumption: conditional independence of the future from the past, 
given the present network.
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Data requirements

Required are repeated measures of the same network:

• same group of actors 

(some composition change is allowed)
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• same relational variable. *states, not events!*

Subsequent observations are assumed to be related 
through an unobserved continuous process of change. 

Fully observed continuous-time data can in principle be 
analysed with standard statistical software – but this 
requires a lot of data organisation.
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Example data: (Andrea Knecht, 2003/04)

Networks among first grade pupils at Dutch secondary 
schools (“bridge class”).

125 school classes
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4 measurement points, 

various network & individual measures.

The following slides show the evolution of the friendship 
network in one classroom.

The graph layout is a bit messy for each observation alone, but
optimal over time according to a stress minimisation algorithm.
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1st wave: August/September 2003
Node size indicates strength of delinquency...
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2nd wave: November/December 2003
... and node node colour indicates sex.
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3rd wave: February/March 2004
So-called anchored layout can be used to...
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4th wave: May/June 2004
... animate the data in a movie (also with visone).
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Points to consider before trying actor-based 
modelling

states ↔↔↔↔ events
NOT snapshots of e-mail traffic, BUT reliable measures of a 
social relation.
Event networks could be aggregated over time 
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Event networks could be aggregated over time 
to obtain state networks!

change ↔↔↔↔ stability

The networks should change ‘slowly’, contain a stable part.

Rules for structural change typically are about 

individual ties changing in response to surrounding 

ties (which remain stable, for that moment).  
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Data format issues to consider

binary ↔↔↔↔ signed ↔↔↔↔ valued
directed ↔↔↔↔ undirected
tie loss possible ↔↔↔↔ growth only networks
1-mode ↔↔↔↔ bipartite

↔↔↔↔
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1-mode ↔↔↔↔ bipartite
single dependent ↔↔↔↔ multiplex

› The standard model is developed for a single dependent, binary, 
directed, 1-mode network that can both grow and shrink over 
time.

Everything else is a non-standard model extension, and not 
necessarily supported by the software implementation. 
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Modelling principles for such data sets

Random walk: Network evolution proceeds as a stochastic 
process on the space of all possible networks;

No contamination by the past: The first observation is not 
modelled but conditioned upon as the process’ starting value.
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modelled but conditioned upon as the process’ starting value.

Continuous-time model: Change is modelled as occurring in 

continuous time.

Micro steps: Big change from one observation to the next is 

assumed to accrue from a sequence of smallest possible changes.

This assumption of temporal decomposability / separability
is quite a strong one, but crucial for statistical power!
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What are smallest possible changes?

› Changes between two networks that differ by just one 
tie variable, while all others are identical.

• Example directed network:
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• Example undirected network:

Terminology: these networks differ by a micro step.
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Micro steps and locus of control

› A micro step involves uniquely identified actors – these 
are assumed to control & decide about the tie variable:

• Directed network: ONE actor
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• Undirected network: TWO actors

The directed case is therefore simpler to model, in an
actor-based way.
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An advantage of continuous-time modelling

Complex  patterns emerging from simple(r) mechanisms
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Some new ties may be realisation-contingent on other new ties. 
Discrete time models cannot easily model their compound emergence.

t0 t1
preferential 
attachment

transitive 
closure
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The network evolution algorithm

Network evolution in observation period t0 → t1 takes 
place as in this straight simulation algorithm:

1. Model time is set to t = t0 , and simulation starts out at the 
network observed at this time point. 
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network observed at this time point. 

2. For all actors, a waiting time is sampled according to the 
rate function.

3. The actor with the shortest waiting time ττττ is identified.

4. If  t + τ τ τ τ > t1 , the simulation terminates.

5. Otherwise, the identified actor gets the opportunity to set a 
micro step. This is determined by his objective function.

6. Model time is updated and simulation proceeds at step 2.
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Visualisation with SONIA

SIENA-based imputation of 
the unobserved trajectory of 
changes between two 
consecutive observations.
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consecutive observations.

The movie shows but one
instantiation of the model.

Classroom friendship data,
Andrea Knecht, 2003/04.
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The rate function

› Models speed differences between actors i .

› Statistics rik of i’s neighbourhood in x are weighted by model 
parameters ρρρρk .

› These weights express whether the feature expressed in the statistic

λ = ρ∑i k ikk
(x) r (x)
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› These weights express whether the feature expressed in the statistic
is related to more frequent (ρρρρk>0) or less frequent (ρρρρk<0) network
changes by the actors.

› They are estimated from the data.

Technically, λλλλi is parameter of an exponential
distribution of waiting times – as in Poisson regression.

Typically, it is good to start an analysis under the
assumption of a periodwise constant rate function.
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The objective function

› Models attractiveness of network states x to actor i .

› Statistics sik of i’s neighbourhood in x are weighted by model 
parameters ββββk .

› These weights express whether the feature expressed in the statistic

= β∑i k ikk
f (x) s (x)
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› These weights express whether the feature expressed in the statistic
is desired (ββββk>0) or averted (ββββk<0).

› Also they are estimated from the data.

Technically, fi(x) is parameter of a multinomial logit
model for discrete, probabilistic choice.

The objective function is the main part of modelling.
Here, hypotheses typically are operationalised.
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Some effect statistics

reciprocity effect =∑i  recip. ij jij
s x x

i ij j
Very often, effect 

statistics are motif
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transitivity effect

Effects measure attractiveness difference between right and 
left configuration, for the focal actor i.

i i

j j

k k

i  tr.trip. ij jk ikjk
s x x x=∑

statistics are motif

(subgraph) counts.



Many other

effects are 

possible to 

include in the include in the 

objective

function…
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Choice probabilities

› Choice probabilities for micro steps are proportional to the 
exponential function of the objective function.

› Valid options are all possible micro steps, plus the option not
to change the status quo.

′ ′→ ∝Pr( ) exp( ( ))i ix x f x
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to change the status quo.

› This probability distribution can be interpreted as 
optimisation of a random utility function, namely the 
objective function  fi plus a Gumbel-distributed error term.

› Note that the probabilities only depend on x′′′′ and not on past 
states, not even x . This can be relaxed (keyword: endowment
function).
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Illustration of “how a micro step works”

Assume that a model specification with the following 
objective function parameters was estimated on a 
classroom friendship network:
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• outdegree ββββoutdg.= -2.6 friendship is rare

• reciprocity ββββrecip.= 1.8 friendship is reciprocal

• transitivity ββββtr.trip.= 0.4 friendship shows clustering

• three-cycles ββββ3-cycl.= -0.7 friendship shows hierarchy

• same gender ββββsame = 0.8 friendship is sex segregated
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Example of an actor’s decision

focal actor
(ego)

alter 1

alter 6

alter 7
Options:

• drop tie to alter 1
• drop tie to alter 2
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alter 1

alter 2
alter 3

alter 4 alter 5

• drop tie to alter 3
• create tie to alter 4
• create tie to alter 5
• create tie to alter 6
• create tie to alter 7
• keep status quo
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Count model-relevant motifs for all options

ego

alter 1

alter 6

alter 7

Status quo (ego):

• 3 outgoing ties
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alter 1

alter 2
alter 3

alter 4 alter 5

• 2 reciprocated ties
• 2 transitive triplets
• 2 three-cycles
• 0 same colour ties
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Count model-relevant motifs for all options

ego

alter 1

alter 6

alter 7

Drop tie to alter 1:

• 2 outgoing ties
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alter 1

alter 2
alter 3

alter 4 alter 5

• 1 reciprocated tie
• 0 transitive triplets
• 1 three-cycles
• 0 same colour ties
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Count model-relevant motifs for all options

ego

alter 1

alter 6

alter 7

Create tie to  alter 4:

• 4 outgoing ties
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alter 1

alter 2
alter 3

alter 4 alter 5

• 3 reciprocated ties
• 2 transitive triplets
• 2 three-cycles
• 1 same colour tie

…these calculations 
are done for all the 
eligible options.
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Option # out-ties # recip. ties # tr.triplets # 3-cycles # same col.

drop tie to 
alter 1 2 1 0 1 0

drop tie to 
alter 2 2 1 0 1 0

drop tie to 
alter 3 2 2 2 2 0
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create tie 
to alter 4 4 3 2 2 1

create tie 
to alter 5 4 2 2 3 0

create tie 
to alter 6 4 2 2 3 1

create tie 
to alter 7 4 2 2 3 1

keep 
status quo 3 2 2 2 0
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Option # out-ties # recip. ties # tr.triplets # 3-cycles # same col.

drop tie to 
alter 1 2 1 0 1 0

drop tie to 
alter 2 2 1 0 1 0

drop tie to 

Calculation of objective function:

ββββoutdg.

ββββ

fdrop-1

fdrop-2

fdrop-3

f
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drop tie to 
alter 3 2 2 2 2 0

create tie 
to alter 4 4 3 2 2 1

create tie 
to alter 5 4 2 2 3 0

create tie 
to alter 6 4 2 2 3 1

create tie 
to alter 7 4 2 2 3 1

keep 
status quo 3 2 2 2 0

Matrix Sego

ββββrecip.

ββββtr.trip.

ββββ3-cycles

ββββsame

fcreate-4

fcreate-5

fcreate-6

fcreate-7

fstat.quo

=
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Option objective 
function

exponential 
transform

probability

drop tie to 
alter 1 -4.1 0.017 10%

drop tie to 
alter 2 -4.1 0.017 10%

drop tie to 
alter 3 -2.2 0.111 68%

ego

alter 1

alter 2
alter 3

alter 4 alter 5

alter 6

alter 7
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create tie 
to alter 4 -4.8 0.008 5%

create tie 
to alter 5 -8.1 0.000 0%

create tie 
to alter 6 -7.3 0.001 0%

create tie 
to alter 7 -7.3 0.001 0%

keep 
status quo -4.8 0.008 5%

alter 3

Dropping the tie to alter 3 
clearly dominates this 
decision situation.

Note: SIENA internally centers 
many variables – this does not 
affect the choice probabilities.
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Homogeneity assumptions

Unless otherwise specified (by including interaction terms 
with nuancing variables), the model assumes…

Actor homogeneity: 

All actors follow the same behavioural rules in their 
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All actors follow the same behavioural rules in their 
networking activities.

Time homogeneity: 

These behavioural rules do not change over time.

This can be problematic whenever actors or time periods 
are heterogeneous but there are no predictors for 
differences in the data. So: check this in your models!
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Significance testing of parameters

› The RSiena software estimates parameters ββββk and their 
standard errors  st.err.(ββββk) . 

› By calculating the t-ratio of those, parameter 
significance can be tested:
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significance can be tested:

t = ββββk /st.err.(ββββk)  

• is approximately normally distributed*

• under the assumption (null hypothesis) that actual 
network evolution follows a model in which the parameter 
is constrained to zero (H0: ββββk =0).

* Thus far, this claim largely rests on extensive simulation studies.
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Model specification / effect selection

When investigating social network dynamics, researchers 
ususally do not come empty-handed but have theories or (at 
least) hypotheses about the mechanisms that might operate.

› These mechanisms [hopefully] can be expressed in terms 
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› These mechanisms [hopefully] can be expressed in terms 
of SIENA parameters, and the hypotheses can be restated 
in terms of the corresponding model parameters.

› By estimating the parameters and calculating 
significance tests for them, the theories / hypotheses can 
be tested empirically.

But... how do parameters & hypotheses relate to each other?
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Local characterisation of choice probabilities

› For two networks that could be obtained in competing 
micro steps from the same network of origin, the ratio 
of choice probabilities is this (“odds”):

c a  
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( )
1

Pr( )
exp ( ) ( )

Pr( )

c a K
a bi

k ik ikc b
ki

x x
s x s x

x x
β

=

 →
= −  →  

∑

difference in model statis-
tics of actor i between the 
two compared moves

compared are two moves (‘micro steps’) 
made by actor i from a network xc to two

“neighbouring networks” xa and xb

model 
parameters
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The main part of the formula in detail:

The sum determines whether xa or xb

is more likely to succeed xc in the network evolution process.

ββββk positive: states with higher scores sik are more likely

( )
1

( ) ( )
K

a b
k ik ik

k

s x s xβ
=

−∑
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ββββk positive: states with higher scores sik are more likely

than states with lower scores; 

ββββk negative: states with lower scores sik are more likely

than states with higher scores.

This way, parameter values ββββk express dynamic tendencies

of network evolution: “actors are moving towards a high

[low] score on the corresponding network statistic s.k ”
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Example (Torlò, Steglich, Lomi & Snijders, 2007)

› 75 students enrolled in an MBA program;

› 4 network variables: advice-seeking, communication, 
friendship, acknowledge-contribution-to-learning;

› co-evolving behavioural dimension: performance in 
examinations;
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examinations;

› several other actor variables: gender, age, experience, 
nationality;

› 3 waves in yearly intervals.

We focus here on the analysis of the evolution of
the advice network only.

Which hypotheses are investigated? [just 3 of them…]
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1. You seek advice from your friends.

Mechanism: presence of a friendship tie between two 
actors increases the likelihood that an advice tie is 
present between the same actors.

If x stands for i seeking advice from j and 
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If xij stands for i seeking advice from j and 
wij stands for i naming j as a friend, then the effect

operationalises the above mechanism, and the cor-

responding parameter ββββfriend can be used to test it.

 friend( )i ij ijj
s x x w=∑
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› The effect statistic si friend counts the degree to which advice
seeking and friendship ‘overlap’. 

› The parameter ββββfriend expresses whether by changing the 
advice network, such an overlap is sought or avoided, i.e., 
whether friendship enhances or weakens advice seeking: 

ββββ positive: advice seeking is more likely when it

Statistical Analysis of Social Networks 44

ββββfriend positive: advice seeking is more likely when it
coincides with friendship;

ββββfriend negative: advice seeking is less likely when it
coincides with friendship.

› In SIENA, the effect can be included as main effect of a 
dyadic covariate (friendship) on network evolution.

Hypothesis 1: βfriend > 0 ; test the null hypothesis βfriend = 0 . 

�

�
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2. The lower your performance, the more advice you 
need [and the more you will seek].

Mechanism: actors with low performance scores are likely 
to have more outgoing advice ties than actors with 
high performance scores.
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If zi stands for performance of actor i, then the
effect

operationalises the above mechanism, and the

parameter ββββown-performance can be used to test it.

 own-performance( )i i ijj
s x z x= ∑
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› The effect statistic si own-performance counts the degree to 
which active advice seeking and performance coincide. 

› The parameter ββββown-performance expresses whether by 
changing the advice network, such an coincidence is sought 
or avoided, i.e., whether own performance enhances or 
weakens advice seeking: 
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weakens advice seeking: 

ββββown-performance positive: high performers seek more
advice than low performers;

ββββown-performance negative: high performers seek less 
advice than low performers.

› In SIENA, the effect can be included as an ego-effect of an 
actor variable (performance) on network evolution.

Hypothesis 2: βown-p. < 0 ; test the null hypothesis βown-p. = 0 .

�

�
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3. The higher your performance, the better the 
advice you can give [and the more you will be asked 
for advice].

Mechanism: actors with high performance scores are likely 
to attract more incoming advice ties than actors with 
low performance scores.
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low performance scores.

Let zjnow stand for performance of actor j, then
effect

operationalises the above mechanism, and the

parameter ββββothers-performance can be used to test it.

 others-performance( )i j ijj
s x z x=∑
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› The effect statistic si others-performance counts the degree to 
which passive advice seeking (‘being asked’) and 
performance coincide. 

› The parameter ββββothers-performance expresses whether by 
changing the advice network, such a coincidence is sought 
or avoided, i.e., whether others’ performance makes them 
more or less attractive as sources of advice: 
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more or less attractive as sources of advice: 

ββββothers-perf. positive: high performers are more often
asked for advice than low p’fs.;

ββββothers-perf. negative: high performers are less often
asked for advice that low p’fs.

› In SIENA, this is the alter-effect of an actor variable. 

Hypothesis 3: βoth-p. > 0 ; test the null hypothesis βoth-p. = 0 .

�

�
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Results on these particular hypotheses

Dependent network: Advice       Estimate  Dependent network: Advice       Estimate  Dependent network: Advice       Estimate  Dependent network: Advice       Estimate  St.ErrorSt.ErrorSt.ErrorSt.Error tttt----stat  pred.?stat  pred.?stat  pred.?stat  pred.?

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1. eval outdegree (density)     -2.6541  (0.0890)  0.0131

2. eval reciprocity              0.9973  (0.1231) -0.0307

3. eval transitive triplets      0.2781  (0.0291) -0.0246
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4. eval 3-cycles                -0.1199  (0.0534) -0.0362

5. eval indegree - popularity    0.0410  (0.0055) -0.0368

6. 6. 6. 6. evalevalevaleval friendship               1.0230  (0.0823) friendship               1.0230  (0.0823) friendship               1.0230  (0.0823) friendship               1.0230  (0.0823) -0.0324    ����

7. eval same background          0.1661  (0.0726) -0.0311

8. eval same experience          0.1174  (0.0757) -0.0704

9. 9. 9. 9. evalevalevaleval performance alter        0.1035  (0.0272) performance alter        0.1035  (0.0272) performance alter        0.1035  (0.0272) performance alter        0.1035  (0.0272) -0.0643    ����

10. 10. 10. 10. evalevalevaleval performance ego         performance ego         performance ego         performance ego         ----0.0840  (0.0256) 0.0840  (0.0256) 0.0840  (0.0256) 0.0840  (0.0256) -0.0564    ����

11. eval performance similarity   0.8371  (0.3044) -0.0358

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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More specifically: tests & p-values

Hypothesis 1: 

“You seek advice from your friends”

t = 1.0230 / 0.0823 = 12.4 ;    p < 0.001

Hypothesis 2: 
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Hypothesis 2: 

“The lower your performance, the more advice you seek” 

t = -0.0840 / 0.0256 = -3.28 ;     p = 0.001

Hypothesis 3: 

“The higher your performance, the more others ask you for advice”

t = 0.1035 / 0.0272 = 3.81 ;     p < 0.001

All three hypotheses are confirmed!
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Example: classroom friendship network 

girls

Nov-Dec 2003
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boys

Aug-Sep 2003
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Analyse this network the lab

› … making use of the following effects:

• outdegree (density),

• reciprocity,

• transitive triplets,
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• transitive triplets,

• gender effects of sender and receiver,

• a gender homophily effect.

› (see exercise on segregation & homophily).
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Results of classroom data lab exercise

Rate function friendship

Rate of change  t1 → t2 (0,97) (1,31) 10,87 (2,63)

Rate of change  t2 → t3 (0,45) (0,50) 3,04 (0,52)

Rate of change  t3 → t4 (0,49) (0,54) 3,80 (0,65)3,56

2,92

8,81

2,73

3,29

7,54

    Model 1     Model 2     Model 3
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Rate of change  t3 → t4 (0,49) (0,54) 3,80 (0,65)

Objective function friendship

Outdegree (0,17) *** (0,16) *** -2,19 (0,16) ***

Reciprocity (0,16) *** 0,84 (0,17) ***

Transitive triplets 0,18 (0,03) ***

primary school friendship (0,21) * (0,21) 0,40 (0,20) *

Male alter (0,18) (0,18) 0,05 (0,17)

Male ego (0,19) (0,19) -0,17 (0,18)

Same sex (0,18) *** (0,18) *** 0,93 (0,18) ***

-2,03

3,56

1,39

0,07

0,28

0,30

—

1,09

0,11

1,70

0,54

0,30

—

—

-1,92

3,29

‘significantly 
biased’
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Model estimation by estimating equations

For each model parameter θθθθ.…
whether part of the rate or of the objective function doesn’t matter

› a statistic S. is identified that can be evaluated on a data 
set y (e.g. the observed data x or draws from the probability 
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set y (e.g. the observed data x or draws from the probability 

model X of these data, i.e., simulated by straight simulation)

› this statistic defines an estimating equation for its 
parameter:

“Expected value over simulations must equal the observed value.”

The vector θθθθ of parameter estimates is obtained as the joint 
solution to the corresponding system of equations.
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Simulations under Estimating Equations algorithm
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› Observed data are met in expectation over simulations, on a 
vector of k statistics corresponding to the kmodel parameters 
(Snijders, 1996, Journal of Mathematical Sociology).

› Trajectories are sampled by straight simulations.
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Estimating statistics used

› Basic rate parameter period m:

Estimating statistic:

=g mθ λθ λθ λθ λ

+= −∑g 1( ) ( ) ( )ij m ij mij
S y y t x t
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› Objective function parameters:

Estimating statistic:

Estimating equations (for all parameters): 

=g hθ βθ βθ βθ β

+=∑ ∑g 1( ) ( ( ))ih kk i
S y s y t

=g g( ( )) ( )E S X S x
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Conditional estimation with estimating equations 

› It can be useful to not estimate the rate parameter 
(modelling the observed amount of network change):

• Can improve model convergence

Focus often is not on rate of change anyway
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• Focus often is not on rate of change anyway

› Then, the straight simulation algorithm needs to be 
slightly modified:

• Stopping rule is not any more “model time exceeds period 
end time”…

• …but becomes “Hamming distance in simulations 
reaches observed Hamming distance”
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Parameter updating based on simulations

› Parameters are iteratively updated according to the rule

where…

1 sim obs

1 1 0
ˆ ˆ ( )−

+ += − −
k k k k

aθ θ D SS
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where…

• D0 is the approximation of the derivative matrix of statistics S
by parameters θθθθ, evaluated at the parameter’s starting value θθθθ0

• ak is a sequence of numbers that approach zero at rate k−c

• c is chosen (0.5<c<1) so as to obtain good convergence 
properties.

› The final parameter estimate     is the tail average
1

1 ˆ
N

k r

rN
+

=

∑θθ̂
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Estimation of covariance structure

› The approximative covariance matrix of the estimator 
function, evaluated at the estimate, is given by

−= Σ� 1

ˆ ˆ ˆ ˆcov ( ) ( )D S D
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

θθθθ

Statistical Analysis of Social Networks 59

where…

• again is an approximation of the derivative matrix of 
statistics S by parameters θθθθ, now evaluated at the estimate    , 

• is the matrix of simulated covariance of the vector S of 
estimation statistics, also evaluated at the estimate.

› Standard errors of the estimates are calculated as the 
square roots of the diagonal elements of this matrix.

ˆ ˆ ˆ ˆθ θ θ θθ θ θ θθ θ θ θθ θ θ θ

Σ ˆ ( )Sθθθθ

ˆDθθθθ

θ̂θθθ
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ML estimation requires approximation of the likelihood of 
the data, therefore…

› Straight simulation inappropriate (typically doesn’t end up in 
the observed data set)

Model estimation by MCMC maximum likelihood
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the observed data set)

› Needed: construction of model-consistent distribution of 
simulated network evolution trajectories that connect 
observed data points

› Is achieved by MCMC techniques (Snijders, Koskinen & 
Schweinberger, 2010, Annals of Applied Statistics)
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Simulations under Likelihood-based algorithms
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› Observed data are met exactly. 

› Connecting trajectories are sampled from the model by 
MCMC technique (Snijders, Koskinen & Schweinberger, 
2010, Annals of Applied Statistics).
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When to use ML estimation?

Pro:

› Makes more efficient use of available information

› Therefore has higher statistical power

Statistical Analysis of Social Networks 62

› Relevant for datasets that have low information content 
already (many missings, little change, small size,…)

Contra:

› Takes considerably more time

Recommendation:

› Use it only when estimating equations gives problems
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Example: preferential trade agreements
(Manger, Pickup & Snijders)
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PTAs in 1998 PTAs in 2003
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Analyse the 1998-1999-2000 period in lab

› Consider hypotheses related to PTA triads…
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› … next  to actor- or dyad-level predictors

GDP, democratisation, bilateral trade, geogr. distance
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Results of the PTA analysis in the lab

Rate function PTA est. st.err.

parameter period 1 0.857 0.110

parameter period 2 1.276 0.138

Objective function PTA est. st.err. p-value

Statistical Analysis of Social Networks 65

degree -0.968 0.270 <0.001

transitive triads 0.318 0.050 <0.001

Distance -0.011 0.003 <0.001

Trade 0.070 0.021 0.001

binDemocracy -0.013 0.124 0.916

same binDemocracy 0.455 0.158 0.004

binDemocracy x same binDemo 0.033 0.124 0.789

GDP_inv 1.161 0.190 <0.001

int.  Trade x GDP_inv 0.117 0.045 0.010
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More on interpretation of parameter estimates

Several types of interpretation:

1. At face value: parameter values and odds

2. Preference? Constraint? Artifact?
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2. Preference? Constraint? Artifact?

3. In relation to the data

4. As extrapolation into the distant future?

Beware: model-based inference!
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1. Parameter values…

The linear shape of the objective function allows the direct 
comparison of different predictor variables’ effects.

• Parameters for two effects with same scale (e.g., “same 
gender” and “same ethnicity”) can be directly compared,
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gender” and “same ethnicity”) can be directly compared,

• otherwise, scaling needs to be taken into account (e.g., 
“reciprocity” and “transitive triplets”)

Note that such comparisons take place on the objective 
function’s scale – NOT on some tangible outcome measure! 

[A predicament common to all logistic models.]
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… and odds

The local characterisation of the model allows to calculate 
conditional odds and conditional odds ratios. 

• The impact of a unit difference in statistic  sik on the odds of 
choosing  xa vs.  xb is given by  exp(β ) .
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ik

choosing  xa vs.  xb is given by  exp(βk) .

• Odds ratios  exp(βk)/exp(βm) = exp(βk –βm) allow to compare 
different effects’ sizes.

• From both, binary (or other) comparison probabilities can be 
calculated.

Note that while such comparisons take place on the proba-
bility scale, they refer to rather artificial choice situations!
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2. Preference? Constraint? Artifact?

Typically, the parameter estimated for the outdegree
statistic                             is quite significantly negative.

Does this mean social actors prefer not to have social ties?

i  outdg. ijj
s x=∑
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Does this mean social actors prefer not to have social ties?

• Suppose βk=-2.6 . 

• Then the odds of having another tie vs. not having it are  
exp(βk) = exp(-2.6) = 0.07

• And the binary probability to have one vs. not to have one is 
exp(βk) /(1+ exp(βk)) = 0.07/1.07 = 0.07 = 7%

• This reflects the overall density of the network! 
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Zero objective function = density 50%

An objective function that does not discriminate between 
options implies model actors’ indifference to everything –
hence, all ties will be present (or absent) with equal 
probability. The density then will be 50%.
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probability. The density then will be 50%.

Because most networks commonly studied have a density way 
below 50% (and hence also most network evolution processes take 
place in a low-density region of the network space), the outdegree
parameter is estimated as significantly negative.

Similar arguments can be made about other parameters, 
BUT beware of control effects in the model!
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Zero reciprocity effect = “reciprocity index 
equals density”

An objective function that controls for density but does 
not discriminate between reciprocation of existing ties and 
creation of asymmetric ties has a reciprocity effect of zero. 
The probability of a reciprocated tie then is identical to the 
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The probability of a reciprocated tie then is identical to the 
probability of any tie, which is the density.

Because many networks commonly studied have a reciprocity 
index way above the density (and hence also most network 
evolution takes place in such network regions), the reciprocity 
parameter is estimated as significantly positive.

The more effects are controlled for, the more difficult it gets 
to tie parameters to descriptive measures…
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Beware of data collection artefacts!

As shown above, the outdegree parameter typically is 
estimated as significantly negative, reflecting a lower than 
50% density of the network.
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In many data collection designs, it is impossible to ever obtain a 
density of 50% (e.g., “Pick up to 12 best school friends, from your 
cohort of size 100+”).

Hence, the parameter’s significant departure from zero must not 
be treated as “result” of an analysis! 

Its inclusion in a model must be viewed as the necessary control 
for density, without which other conclusions cannot be obtained.
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Don’t mis-diagnose constraint as preference!

Several parameters may not necessarily reflect the 
expression of actual preference in the actors’ decisions, but 
features of the opportunity structure they face when 
making them.
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making them.

Case in point: transitive closure.
“Friends of my friends are my friends” 

… because I prefer to attain cognitive balance?
… or because I have a higher chance to interact with them?

Unique conclusion typically not possible without 
validation by additional (e.g., qualitative) data.
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3. Interpolated region

146

148

150

152

154

156

158

Suppose a modelled network 
statistic s changes from 156 to 
146 during an observation 
period.

model prediction 
of expected 
statistic, high 
rate of change…

fixed
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144

146

148

150

152

154

156

158

0.0 0.2 0.4 0.6 0.8 1.0

144

0.0 0.2 0.4 0.6 0.8 1.0The corresponding parameter
is adjusted such that data point 
146 is “hit” in expected value 
when starting out from 156.

Steepness of the curve is co-
determined by the total amount 
of change in the period (as 
modelled by rate parameters).

… & low rate of 
change

modelled



universityof

groningen

behavioural and

social sciences

sociology

146

148

150

152

154

156

158

4. Projected equilibrium

Like all Markov processes, these 
models eventually lock in to an 
equilibrium distribution
(here: on the network space).

model prediction 
of expected 
statistic, high 
rate of change…

Statistical Analysis of Social Networks 75

144

146

148

150

152

154

156

158

0 2 4 6 8 10

144

0 2 4 6 8 10
This equilibrium…

• is uniquely identified by 
the parameter estimates,

• does not allow to draw 
conclusions about the 
observation period!

Similar issues as known for exp. 
random graph distributions.

… & low 
rate of 
change

equilibrium 
value of 
expected 
statistic 
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Adding more nuance

› Differentiating tie creation & tie maintenance

• Endowment & creation effects 

› Goodness of fit checking
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› Goodness of fit checking

• Score type tests (not in slides)

• ‘Violin plots’

• Time heterogeneity tests (not in slides)
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Differentiating tie creation & tie maintenance

Remember the ‘objective function’:

› Models attractiveness of network states x to actor i .

› Statistics sik of i’s neighbourhood in x are weighted by model 

= β∑i k ikk
f (x) s (x)
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› Statistics sik of i’s neighbourhood in x are weighted by model 
parameters ββββk .

› These weights express whether the feature expressed in the 
statistic is desired (ββββk>0) or averted (ββββk<0).

› Also they are estimated from the data.

Parameters at the same time express conditions under 
which new ties are established and existing ties are 
maintained. 
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What if you want to distinguish the 2 tendencies?

Earliest versions in StOCNET:

› So-called ‘gratification effects’ for selected parameters.

› To single out effects on creation vs. continuation of ties, one 
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› To single out effects on creation vs. continuation of ties, one 
had to manually exploit the covariance matrix of estimates.

Later StOCNET versions, early RSiena:

› Systematic availability of ‘endowment effects’ expressing 
continuation as an additional feature. 

› Same heavy manual data handling necessary to single out 
effects on creation vs. continuation of ties.
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Since spring 2011:

RSiena now features three separate parameters per effect:

› The usual, non-discerning ‘evaluation effect’ expressing 
effects on the creation as well as maintenance of ties;
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› the ‘endowment effect’ only expressing continuation of 
existing ties;

› the ‘creation effect’ only expressing establishment of new ties.

When replacing an ‘evaluation’ effect by the pair of 
corresponding ‘endowment’ and ‘creation’ effects, no clumsy 
number crunching is necessary anymore; interpretation is 
more transparent.
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How to interpret network endowment and creation 
effects, vs. evaluation effects. 

+ eval

outdegreeβ

− eval

outdegreeβ
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Diagrams show changes in the objective function for the 
purple (upper left) actor that are implied by the transitions 
indicated by the arrows between dyad states.

− outdegreeβ

− −eval endow

outdegree recipβ β

+ +eval creation

outdegree recipβ β



universityof

groningen

behavioural and

social sciences

sociology

–1.55

Example 1 (friendship, data courtesy of Gerhard van de Bunt)

outdegree = –1.55, recip.creation = 0.98, 
recip.endowment = 2.17

Unilateral link formation / dissolution:

Interpretation:

• formation of reciprocal ties 
is evaluated higher than 
formation of unilateral ties 
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–1.55

–0.57

+1.55 

–0.62

Reciprocation / ending reciprocation:

formation of unilateral ties 
(upper arrows), 

• dissolution of reciprocal 
ties is evaluated MUCH 
lower than dissolution of 
unilateral ties (lower 
arrows), EVEN lower than 
formation of reciprocal 
ties.
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–3.1

Example 2 (director provision, data courtesy of Olaf Rank)

outdegree = –3.1, recip.creation = 2.9, 
recip.endowment = 0.7

Unilateral link formation / dissolution:

Interpretation:

• formation of reciprocal ties 
is evaluated higher than 
formation of unilateral ties 
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–3.1

–0.2

+3.1 

+2.4

Reciprocation / ending reciprocation:

formation of unilateral ties 
(upper arrows), 

• dissolution of reciprocal 
ties is evaluated lower than 
dissolution of unilateral 
ties (lower arrows), BUT 
HIGHER than the 
formation of reciprocal 
ties: temporally limited 
reciprocation.
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rec.-creation0

Dissolution of reci-
procal ties is more

Dissolution of 
reciprocal ties is more

Dissolution of 
reciprocal ties is less

Two ‘reference points’ for interpretation of the 
reciprocity-endowment parameter (assuming reciprocity > 0)
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procal ties is more
costly than dissolution 
of unilateral ties, but 
less costly than the 
creation of reciprocal 

ties.

short lived reciprocity
unstable dynamics, other 
effects needed to stabilise

reciprocal ties

reciprocal ties is more
costly than dissolution 
of unilateral ties, and 
also more costly than 

the creation of 
reciprocal ties.

added value
reciprocal ties are 

‘naturally stable’

reciprocal ties is less
costly than dissolution 
of unilateral ties, and 

also less costly than the 
creation of reciprocal 

ties.

makes no sense
if reciprocity is a positive 

property
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Extension of goodness of fit checking

What is “goodness of fit” for stochastic network models?

› Simulate many networks from the estimated model, and 
see how well these simulated networks replicate features 
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see how well these simulated networks replicate features 
of the data that were not part of the model.

Since long (in StOCNET & early RSiena):

› these t-ratio indicators should not be too different from 
zero (ideally remain in the non-significant region)

E(simulated feature) observed feature
t

st.dev.(simulated feature)

−
=
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Aim was for a while to mimic ‘ergm’-package gof options
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› Black solid line shows observed values, 

› boxplots show distribution of simulated values.

This reveals a bit more about the goodness of fit than a 
collection of t-ratios does.
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Now available in RSiena: ‘violin plots’

› Red solid line shows 
observed values, 

› boxplots & violins show 
distribution of simulated 

Goodness of Fit of GeodesicDistribution

p: 0.623

4 5
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distribution of simulated 
values,

› p-value is based on a test 
of Mahalanobis’ distance.

Examples will be 
elaborated in the  
workshop.

S
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c

1 2 3 4 5 6 7 8
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