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Abstract

We give a non-technical introduction into recently developed methods
for analyzing the co-evolution of social networks and behavior(s) of the
network actors. This co-evolution is crucial for a variety of research topics
that currently receive a lot of attention, such as the role of peer groups in
adolescent development. A family of dynamic actor-driven models for the
co-evolution process is sketched, and it is shown how the SIENA software
can be used for estimating these models. We illustrate the method by
analyzing the co-evolution of friendship networks, taste in music, and
alcohol consumption of teenagers.

1 Introduction

Social network analysis is concerned with how social actors are related to each
other (cf. Carrington et al. 2005). The social actors can be individual persons,
but also organizations, countries, etc., and the relations studied can be asymmet-
ric (like investments of one company in another’s stocks) or inherently symmetric
(like two employees sharing an office). The basic data structure is the graph,
which can be directed (for modeling potentially asymmetric relations) or undi-
rected (for modeling symmetric relations). In a majority of applications of social
network analysis, there is a natural interdependence between network structure
and the individual characteristics of the network actors. The best-known pat-
tern of this type may be network autocorrelation, i.e., the empirical finding that

*We thank the Chief Scientist’s Office of the Scottish Home and Health Department for
funding data collection. An earlier version of this paper was presented at the XXV Sunbelt
Social Network Conference, Redondo Beach, February 16-20, 2005.

TThe first author was funded by the Netherlands Organization for Scientific Research
(NWO) under grant 401-01-550. All correspondence shall be directed to the first author,
ICS / Department of Sociology, Grote Rozenstraat 31, 9712 TG Groningen, The Netherlands,
e-mail: c.e.g.steglich@rug.nl.



social ties occur more frequently among demographically or behaviorally similar
actors than among dissimilar actors (Doreian 1989). For explaining such pat-
terns, it is necessary to uncover the processes by which the interdependencies
come into existence. In general, there will be competing theories. Concerning
the example of network autocorrelation, one prominent explanation is the ho-
mophily principle, which stands shorthand for the argument that it is easier or
more rewarding for an actor to interact with a similar other than with a dis-
similar other (McPherson, Smith-Lovin & Cook 2001). When this is the case,
network ties tend to form according to similarity on some actor attribute, and
network autocorrelation emerges as a consequence of tie selection over time. An
alternative explanation of the same phenomenon is the assimilation principle
according to which network actors adapt their own individual characteristics
to match those of their social neighborhood (Friedkin 1998). Again, network
autocorrelation emerges over time, but now due to processes of social influence.

Implicit in such explanatory approaches is often an assumption about change
over time. It is obvious that selection according to the homophily principle
requires the social network to be dynamic (i.e., changeable over time), while
actor characteristics can be dynamic or static. The converse holds for social
influence according to the assimilation principle. Here, the actor characteristics
are required to be dynamic, while there is no requirement on the social network
part. When in an application, the social network as well as the individual
characteristic of interest are dynamic, both paradigms could occur. In such
situations, it becomes an issue of empirical investigation to determine which of
the two can better explain the observed patterns of network autocorrelation, by
assessing the relative importance of either mechanism.

In this paper, an outline is provided of how such questions can be answered.
We cover the case of an evolving ‘complete’ network and co-evolving behavioral
dimensions, for which panel data have been collected. ‘Completeness’ of the
network here refers to the boundaries of the set of actors on which the social
network is studied. In general, the dynamic processes involved are hardly limited
to a conveniently bounded group of actors, but we require that a meaningful
approximation of the relevant ‘carrier group’ be made, by focusing on groups
that contain within them a large part of the social processes relevant to the
phenomenon that is investigated.

Some interesting models for the co-evolution of networks and actor charac-
teristics can be found in the literature (Macy et al. 2003, Dorogovtsev, Goltsev
& Mendes 2002, Mark 1998, Latané & Nowak 1997, Carley 1991). The models
presented in this paper differ from these strands of literature in their explicit
gear towards statistical inference. This imposes requirements of flexibility and
a modicum of empirical realism, as the models must be useful for parameter
estimation, hypothesis testing, fit assessment, and the improvement of fit by
extending the model with additional components.

In the example discussed, the models are applied for investigating the joint
dynamics of taste in music, alcohol consumption, and friendship ties among
adolescents. As approximation of the social space in which these dynamics take
place, we focus on a school cohort for which three waves of network-behavioral
panel data were collected (Pearson & West 2003). The SIENA software (Snijders
et al. 2005) is used for assessing the strength of homophily and assimilation
processes. A transfer of the sketched method to other research domains involving
interdependence between a social network and individual actor characteristics
is easily possible.



Overview

In the following Section 2, a family of stochastic, actor-driven models for the
co-evolution of social networks and individual behavior is sketched. These mod-
els build on earlier models for ‘pure’ network dynamics (Snijders 1996, 2001,
2005) that were recently extended to account for the joint dynamics of networks
and behavior (Steglich, Snijders & Pearson 2004, Snijders, Steglich & Schwein-
berger 2005). This modeling approach is applied, in Section 3, to an empirical
study of the joint dynamics of friendship networks, taste in music, and alcohol
consumption among teenagers. For this purpose, we make use of the SIENA
software (Snijders et al. 2005). In Section 4, recurring issues related to model
identification and interpretation of the parameter estimates are discussed. We
conclude with a brief recapitulation of our main messages in Section 5.

2 A family of actor-driven models for the
co-evolution of social networks and behavior

Snijders (1996, 2001, 2005) introduced a family of stochastic, actor-driven mod-
els for the evolution of social networks ‘alone’ (i.e., not yet allowing for co-
evolving individual dimensions). The basic idea is to take the totality of all
possible network configurations (directed graphs) on a given set of actors as the
state space of a stochastic process, and to model observed network dynamics
by specifying parametric models for the transition probabilities between these
states. For the simplest case of but two actors A and B, the state space would
consist of the 4 possible dyad configurations (i) A and B unconnected (empty
dyad), the two asymmetric dyads (ii) A — B and (i7i) A < B, and the mu-
tual dyad (iv) A < B. When increasing the number n of network actors, the
number of states rises faster than exponentially!, such that for a set of six ac-
tors, the state space already contains more than a million of possible network
configurations.

When analyzing network panel data, each measurement of the network cor-
responds to one state in this (very large) state space. The explanation of the
observed network dynamics (i.e., the ‘jumping’ from one observed state to the
next) is formulated in terms of transition probabilities between the states, with
the first observation being conditioned upon, i.e., taken as (exogenously given)
starting value of the stochastic process. Because the set of possible transitions
between the states also is very large, a series of simplifying assumptions are
made in order to reduce the complexity of the modeling task?. It is assumed

e that the transitions between panel measurements are manifestations
of an underlying process that takes place in continuous time,

e that actors do not coordinate their actions but act conditionally
independent of each other, given the current state of the network, and

e that actors only change at most one tie variable at a time, i.e., create
one new link or dissolve one existing link.

1The size of the state space is 2n(n=1) for the case of directed, binary networks that we
treat in this paper.

2For the implications which these assumptions have on the research topics that can be
studied, as well as the possibilities to relax these assumptions, we refer to the pertinent
discussions in the papers quoted in this section.



By these assumptions, the complex modeling task is reduced to the two smaller
tasks of (a) modeling the change of one tie variable by one actor at a time (a so-
called network micro step), and (b) modeling the occurrence of these micro steps
over time. Task (a) is solved by specifying a multinomial logit distribution that
instantiates the maximization of an individual random utility function (the so-
called objective function), while task (b) is solved by specifying an exponential
distribution for the actors’ individual waiting times (with parameter given by
the so-called rate function). By this approach, the time-dependence of the
network evolution process is implicitly modeled as emergent consequence of the
model-inherent progression of time, and need not be modeled explicitly. Both
model parts allow for dependence on state (i.e., network structure), time, and
actor, but not on the history of the process (Markov assumption). For more
details, we refer to the specific model analyzed in Section 3, and to the other
papers quoted in the beginning of this section.

So far, the model sketch covered only the dynamics of network evolution.
The addition of co-evolving behavioral dimensions is done in a straightforward
manner, by first transferring the modeling framework to behavioral evolution
and then integrating the two models. For each behavioral variable, a separate
behavioral state space is handled, consisting of all possible distributions of indi-
vidual behavior scores (behavior is required to have discrete outcomes), and the
observed transitions on each behavioral dimension are modeled by decomposi-
tion into behavioral micro steps, which consist of one actor adjusting his score
on the behavioral dimension by moving at most one category up- or downward
at a time. These micro steps again are modeled by a multinomial logit distrib-
ution based on a random utility objective function, and their occurrence by an
exponential distribution based on a rate function.

Integration of the separate models for network evolution and the evolution
of the separate behavioral dimensions is done by (a) specifying the Cartesian
product of the separate state spaces as the joint state space, by (b) assuming
conditional independence of the occurrence of the different types of micro steps,
and by (c) extending the separate objective functions and rate functions to al-
low for dependence on the respective other dimensions of the state space. It is
in step (c) that the interdependence between network dynamics and behavioral
dynamics is introduced into the model. The resulting model for the co-evolution
process of the network and the behavioral dimensions inherits its Markov prop-
erty from the separate processes it is constructed from. The ‘actor-driven’ nature
of the model family is reflected in the locus of action. It is the actors who get
an opportunity for changing what they have under control (outgoing ties and
own behavior), the relative frequencies of these opportunities being modeled by
rate functions. And these actors base their decisions on evaluations of the ex-
pected immediate consequences of their decision, the evaluations being modeled
by objective functions.

The Markov property implies that, for each set of model parameters, there
exists a stationary (equilibrium) distribution of probabilities over the state space
of all possible network-behavior configurations. In general, the configuration ob-
served in the first wave of the panel will not be in the center of this equilibrium
distribution. Because of this, the model defines a non-stationary process of
network-behavioral dynamics, starting at the first observation, and then ‘drift-
ing’ towards those states that have a relatively high probability under the equi-
librium distribution. As can be guessed from the complexity of the model,



neither the equilibrium distribution nor the likelihood of a data set under a
given model parametrization can be calculated in closed form, except for some
trivial special cases (Snijders & van Duijn 1997). However, simulations of the
model-specific evolution process are possible, and by way of simulation-based
inference, parameter estimates can be obtained. The SIENA software instan-
tiates simulation-based method of moments estimation of these models, and
also allows for simulation-based mazimum likelihood and Bayesian estimation
of models for pure network evolution (Snijders et al. 2005, Koskinen 2004).
Extension of the likelihood-based estimation methods to the co-evolution with
behavioral dimensions is pending.

3 An empirical study using SIENA

A domain in which the dynamics of social networks and individual behavior
are likely to be strongly interrelated is the domain of fads and fashions. The
particular fashion phenomenon studied in this section is the development of
taste in music over time. We investigate to what degree and how the social
network context mediates listening behavior of adolescents, and whether and
how, in turn, their taste in music affects the social relations among them.

It is a characteristic of fashion phenomena that the tangible shape of a
fashion signal (i.e., exactly which clothes to wear or which music to listen to) is
not so important, compared to its use as an identity signal for communication
among actors in the same social structure. ‘Same-ness qua fashion’ matters
in the social context, while the individual fashion attribute has no inherent
value to the actor (“fashions come and go”). It has been argued that fashion
signals serve at the same time for the creation of social identity (Bryson 1996,
SIRC 2004) and for the manifestation of a status hierarchy (Bourdieu 1984).
Classic descriptions of fashion emphasize differentiation and imitation as driving
forces underlying fashion dynamics (Veblen 1899, Simmel 1904). According
to these theories, actors at the top of the hierarchy attempt to differentiate
themselves from the those below by acting as ‘trendsetters’, while actors lower
in the hierarchy attempt to imitate those above them (Suzuki & Best 2003).

In our application, we can reasonably expect that the trendsetters in the
first place are the musicians listened to, who are themselves not part of the
group of adolescent listeners studied. We accordingly hypothesize that the dif-
ferentiation aspect of fashion dynamics (which takes place at the top of the
postulated status hierarchy) plays a secondary role in the population studied,
and that imitation will be the major determinant of the dynamics of adolescents’
music listening behavior. Hence, we expect to find a strong tendency towards
behavioral conformity among friends (assimilation hypothesis).

Moving down in the postulated status hierarchy, also schoolmates with a
prominent music taste may act as a kind of localized trendsetter (the literature
on product innovation here speaks of ‘early adopters’). Assuming that it is
not the individuality of these adolescents that causes them to act as proxy
trendsetters, but the music taste they exhibit, we can expect adolescents who
listen to more trendy music to be more popular as friends than those who listen
to less trendy music. So, if taste in music indeed is an indicator for a status
hierarchy, it should be possible to reveal this hierarchy by assessing effects of the
adolescents’ taste in music on their popularity (popularity ranking hypothesis).



Further, we expect an asymmetry of adaptation patterns: adolescents with
lower-ranked taste in music should more easily start listening to higher-ranked
music than vice versa (adoption asymmetry hypothesis).

The hypotheses about assimilation and adoption asymmetry refer to the
behavioral part (dynamics of taste in music), while the hypothesis about the
popularity ranking refers to the network part (dynamics of friendship). For
testing them, we make use of the SIENA software (Snijders et al. 2005). SIENA
(shorthand for Simulation Investigation for Empirical Network Analysis) is a
computer program that carries out the statistical estimation of the dynamic
actor-driven models introduced in Section 2. It can be downloaded for free at
http://stat.gamma.rug.nl/stocnet/. The best way to run SIENA is as part of the
StOCNET program collection (Boer et al. 2003), which is available at the same
website.

Data and operationalization

We study the social network data collected in the Teenage Friends and Lifestyle
Study (Michell & West 1996, Michell & Amos 1997, Pearson & West 2003). It
covers a cohort of pupils at a school in the West of Scotland for which friendship
network data, substance use, and several lifestyle variables (including ‘music
consumption’) were recorded in three yearly waves, starting in 1995 with pupils
aged 13, and ending in 1997. A total of 160 pupils took part in the study,
of which 129 were present at all measurement points; these were included in
our analyses. The friendship networks were assessed by a name generator that
allowed for mentioning up to 6 friends.

Music taste was recorded by a 16-item inventory of music genres. Pupils were
asked which type of music they liked listening to, with the options being rock,
indie, chart music, jazz, reggae, classical, dance, 60s/70s, heavy metal, house,
techno, grunge, folk/traditional, rap, rave, and hip hop. It may be argued that
the fashion aspect of listening to music refers more to the particular musicians
and songs that are popular than to the music style pupils listen to. However,
we think that this is much more the case for later phases in life, when an ‘own
taste’ has been acquired, than for the early phase of adolescence we investigate
here, where experimenting plays a stronger role. Although certainly not the
ideal operationalization, it seems acceptable to assume that among 13-15 year
old pupils, preference for whole styles of music may (still) be treated as a fashion
phenomenon.

As common in lifestyle research (e.g., Katz-Gerro 1999), the original items
had to be reduced to a manageable amount of dimensions. We applied the fol-
lowing procedure: first, factor analyses were run, per measurement and on the
pooled data. These suggested a 3 or 4 factor solution. Figure 1 shows a posi-
tioning of the items in 3-dimensional space according to a principal components
analysis of the pooled data. The solutions differ in the role of the items rap,
reggae, house and hip hop, which apparently form a weak scale on their own.
Due to the comparatively little amount of independent information on this 4th
dimension, we decided to exclude these items?. Further, the item 60s/70s, which
in Figure 1 lies in-between the “rock” and the “classical” group, was special in

3Running SIENA with strongly correlated variables is prone to lead to convergence problems
of the stochastic approximation algorithm.
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Figure 1: Music items in rotated 3D principal components space.

the sense that in separate factor analyses per measurement point, it ‘moved’ out
of the “classical” group (in wave 1) into the “rock” group (in wave 3). Also this
item was excluded. The final scales were obtained by a non-parametric Mokken
scale analysis with MSP (Molenaar, Sijtsma & Boer 2000) on the pooled data,
which gave the three scales solution as indicated in the figure. Although scale
characteristics are weak for all the scales, with H-coefficients ranging from 0.35
(classical) to 0.40 (techno) and Cronbach’s o ranging from 0.56 (rock) to 0.66
(techno), we continue to work with them because of their intuitive appeal and
the illustrative character of the application. Scale averages over all three waves
are 2.27 for techno (sum score of 4 dichotomous items), 0.83 for rock (4 items)
and 01.1 for classical (3 items). The mainstream taste thus seems to be captured
in the techno scale, followed at a distance by the rock scale. Listening to the
music summarized in the classical scale seems to be confined to a rather small
minority.

Earlier analyses on the same data set revealed that alcohol consumption
was highly related to social network structure, both in terms of alcohol-based
homophilous selection of friends and in terms of assimilation of alcohol con-
sumption to the friends (Steglich, Snijders & Pearson 2004). In order to control
for this major determinant of the friendship dynamics, we include the alcohol
dimension as a co-evolving behavioral dimension into our study, next to the
music consumption variables we are primarily interested in. Also, alcohol con-
sumption is an element of adolescent lifestyle that may well be differentially
associated with the three music styles we distinguish, and it seems desirable to
assess its relation to taste in music. Alcohol is coded on a 5-point frequency
scale ranging from 1 (‘I don’t drink’) to 5 (‘more than once a week’).



Model specification

As indicated in Section 2, the specification of an actor-driven model is done by
defining, for each of the dimensions that co-evolve, a rate function and an objec-
tive function. The rate function indicates the speed at which the network actors
get an opportunity to change their behavior on the respective dimension, while
the objective function indicates how such changes look like. In our application,
this amounts to the specification of rate and objective functions for the network
evolution part, for the three music dimensions identified, and for the alcohol
dimension — a total of 10 functions. In order to keep things simple, we assume
that the five rate functions are periodwise constant for each of the co-evolving
dimensions, i.e., we estimate one basic rate parameter for each period and each
dynamic dimension.

The objective functions are specified as follows. For network evolution, we
assume that actors express some basic tendencies that are well-known to play a
role in friendship networks (van de Bunt, can Duijn & Snijders 1999, Snijders
2001):

outdegree effect Negative effect: actors tend not to establish
friendship with just anyone.

reciprocity effect Actors tend to reciprocate friendship.

distance-2 effect Actors tend to prefer direct friendship to keeping
friends’ friends at a distance.

gender homophily effect  Actors tend to prefer same-gender friendships.

gender ego effect Boys and girls may differ in their preferred
number of friends.

gender alter effect Boys and girls may differ in popularity.

behavior homophily effect Actors may prefer friendship to others with same
music taste and/or alcohol consumption level.

behavior ego effect Music taste and/or alcohol consumption may
determine social activity.

behavior alter effect Music taste and/or alcohol consumption may
determine popularity.

The first three components of this network objective function depend only on
the network itself, while the others depend on characteristics of ego (the actor
‘sending’ the network tie), of alter (the actor ‘receiving’ the tie), or both (simi-
larity between ego and alter). The homophily effects, expressing a preference for
similar friends compared to dissimilar ones, may equivalently be characterized
as ‘heterophobia’ effects — a point that can be helpful for interpreting parameter
estimates. For behavioral evolution (and this concerns all 4 behavioral dimen-
sions listening to techno / rock / classical and alcohol consumption), we assume
that actors are affected by the following determinants:

tendency effect Captures the overall preference for the three
music dimensions and alcohol consumption.

assimilation effect Actors tend to adapt to the music taste and/or
alcohol consumption of their friends.

gender effect Boys and girls may differ in music taste and/or
alcohol consumption.



other behaviors’ effects Alcohol consumption and the preference for the
three music dimensions may affect each other.

The homophily and assimilation effects are defined by a dyadic measure of
friendship similarity on actor characteristics. It may suffice here to say that
this similarity measure is standardized to the unit interval, with a score of zero
indicating that two friends are maximally dissimilar on the actor characteristic
(i.e., one of them has the minimum score and the other the maximum score),
and a score of one indicating that they have identical scores (of whatever scale
value).

When running SIENA in the StOCNET environment, model specification is
done by checking the respective effects in the left column of the left part of the
model specification screen (see Figure 2). The right part of the screen indicates
the rate function (here modeled as periodwise constant).
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Figure 2: Screenshot of SIENA’s model specification window.

For each of the effects included, a parameter is estimated, and some of these
can be used for testing the hypotheses derived above. The assimilation hypoth-
esis referring to the three dimensions of music taste can directly be tested by
looking at significance of the parameters estimated for the assimilation effect in
the respective behavioral objective function. The popularity ranking hypothesis
can indirectly be tested by looking at significance of the parameters estimated
for the effects techno alter, rock alter, and classical alter. If there is a popu-
larity hierarchy revealed by music listening, the listening behavior of the friend
(alter) should be linked to the pupil’s preference for keeping or establishing the
respective friendship tie. If such a hierarchy can be uncovered, the adoption
asymmetry hypothesis, finally, can be tested by looking at significance of the
main effects of the different music styles on each other. Here, we expect listen-
ing to the lower-ranked music style to have a stronger effect on listening to the
higher-ranked music style than vice versa.



The model was estimated under the standard options of SIENA, which means:
estimation of the parameters is based on 4 consecutive and increasingly accurate
subphases of the Robbins-Monro moments estimation algorithm, and standard
errors are calculated based on 500 additional simulation runs (Snijders et al.
2005). A total of 52 parameters were estimated with the SIENA software (version
2.0), which on a 3.0GHz Pentium 4 machine took 39 hours of estimation time?.

Results

The results of our analysis are given in Table 1. We first address the results for
the network part of the model, and then those for the behavioral dimensions.

In the friendship part of the model, a negative outdegree parameter indicates
that friendship with arbitrary others is not stable, unless there are additional
desirable properties to the friendship tie — e.g., reciprocation (positive reci-
procity parameter), transitive embeddedness (negative distance-2 parameter),
or a same-gender friendship (positive gender homophily parameter). Further-
more, girls tend to be more active in the friendship network than boys, i.e.,
tend to have more friends than boys, as indicated by the parameter of gender
ego. Concerning the impact of music taste on friendship dynamics, one can say
that there is a positive effect of listening to rock on popularity (parameter rock
alter), there is homophily according to classical listening habits, and a positive
effect of listening to classical on activity (parameter classical ego). In Table 2,
an overview calculation is given of the impact which the different possible music
taste configurations in a pair of actors have on the ‘friendship value’ between
these actors (note that the table refers to situations in which each actor listens
to but one music style). For the popularity ranking hypothesis, this means that
if there is a status hierarchy based on music listening, it is the rock listeners that
are highest in this hierarchy (parameter rock alter) while classical listeners are
lowest (because they are equally shunned by techno as well as rock listeners, as
expressed in the classical homophily / heterophobia parameter). As expected,
alcohol consumption (the fourth behavioral dimension) has a strong impact on
friendship dynamics in terms of homophily.

When looking at the music listening parts of the model, we see that the as-
similation hypothesis can be confirmed only on the dimensions rock and techno,
where the assimilation parameter is significant, but not for the classical di-
mension. The adoption asymmetry hypothesis, when applied to the diagnosed
hierarchy, states that rock listeners (as the highest-ranked status group) should
least easily adopt other music listening habits, and that classical listeners (as
the lowest-ranked status group) should most easily adopt them, with techno
listeners being located in-between these groups. Table 3 shows how changes
on one music dimension affect the other music dimensions. What should be
expected according to the adoption asymmetry hypothesis is a higher impact of
lower-status music on the odds of listening to higher-status music than in the
opposite direction. When confining our discussion to the parameters that are
significant at a = 0.05, the only statement we can make here is the comparison
between the mutual effects of techno and rock on each other (all other main

4In the software version used for the reported analyses, computation time is roughly
quadratic in the number of actors and in the number of parameters. A reduction to lin-
ear dependence on the number of parameters has meanwhile been achieved. This option will
be available from SIENA release 2.2 onward.
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effects are insignificant). An increase of the rock score by one reduces the odds
of increasing the techno score versus decreasing it, by 50% (parameter rock on
techno). Vice versa, an increase of the techno score by one reduces the respective
odds for increasing the rock score, by just 40%. This means that comparatively
less rock listeners tend to also listen to techno than techno listeners tend to also
listen to rock, and can be counted as (weak) support of the adoption asymme-
try hypothesis. Similarly, the comparison between techno and classical is in the
predicted direction.

However, the most striking asymmetry in Table 3 concerns the comparison
of rock and classical. Here, the hierarchy seems to be reversed: in contradiction
to the adoption asymmetry hypothesis, a higher score on the rock scale increases
the odds of listening more to the styles captured in the classical scale, while a
higher score on the classical scale decreases the odds of listening more to the
styles summarized in the rock scale.

Apparently, the classical dimension is special in several ways: there is no
assimilation occurring on this dimension, but homophilous social selection. Both
stands in diametrical contrast to the other music dimensions, which seem to be
more ‘socially acquired’ and less ‘socially steering’ than the classical taste. The
other dimensions also are not gender-specific, while there is a marginal positive
effect of being female on classical (see also Roe 1985). The social hierarchy
derived from the friendship dynamics puts classical at the lower end of the
hierarchy, but this position is not confirmed by the music listening dynamics.
Finally, classical is the only music taste associated to our controlling behavioral
variable alcohol consumption: they tend to be incompatible.

As a result of our analyses, what emerges is a picture of a majority of pupils
listening to music as summarized in the techno and rock scales, for whom the
hypotheses are confirmed and where a preference for rock items seems to coincide
with higher social status. And there is a small exceptional group of mainly (but
not exclusively) girls, listening to music styles in the classical scale because
of reasons exogenous to their school environment, barely drinking alcohol, and
being avoided by most of their schoolmates. Their taste in music, though, seems
to have appeal to the rock listeners, which makes it difficult to position these
pupils on the social hierarchy. Previous research showing that tastes in music
move during adolescence from mainstream ‘chart’ music (included in out techno
scale) to more specific genres later on (Roe 1985, 1999) is confirmed by our
analysis.

4 Notes on model assumptions, model identifi-
cation, and interpretation of parameters

The threefold purpose of the following short discussion is (1) to give some hints
on how to solve problems of parameter identifiability that may lead to diver-
gence of the estimation algorithm. Related to this, we (2) point out the practical
limitations incurred by making some standard model assumptions such as the as-
sumption of homogeneity of rate and objective functions across actors. Finally,
(3) some guidelines are given on how to interpret (and how not to interpret)
parameter estimates. All parameters discussed in the previous section belong
to the objective functions of the different submodels (network, the three music
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tastes, and alcohol). These functions are meant to capture stable mechanisms
by which the network actors update their own behavior and outgoing network
ties. Next to these, there also are the rate functions’ parameters, which are used
for modeling the progressing of time. The discussion starts with the rate para-
meters, followed by the parameters of the objective functions. For all parameter
types, we use the empirical results from the previous section as illustration.

Rate parameters

The parameters of the rate functions specify the frequency by which an actor
in the network is in a position to change his status quo on the respective sub-
model’s dimension. Noting that actors are allowed not to change anything, the
rate parameters may not be viewed as strictly behavioral indicators of change
frequency, but as indicators for frequency of reconsideration, which may or may
not lead to an actual change. When looking at the rate parameters in Table 1,
we can see that in period 1, an actor on average got 12.45 times the opportunity
to change one of his outgoing network ties, 3.40 times the opportunity to change
his score on the techno dimension, 2.04 times the opportunity to change his rock
score, et cetera. However, the rate parameters are sensitive to scale. This does
not matter overly much when considering the network rate parameters, as the
social network is ‘naturally scaled’ as long as tie variables are dichotomous.
Here, each change means a change by ego of the friendship tie to one alter. For
the behavioral dimensions, on the other hand, a change means one step up or
down the scale, and for an M-point scale, the actor needs at least M —1 changes
for moving from the lowest to the highest scale value, or vice versa. Hence, the
rate parameters of the different behavioral dimensions can be compared to each
other only after controlling for the scale (i.e., dividing by the range of the de-
pendent behavior variable). In our data, all behavioral variables are measured
on 5-point-scales, except for the classical dimension which is measured on a 4-
point-scale. After controlling for scale, we (still) get the ordering techno = rock
> alcohol ~ classical in the first period and techno > alcohol = rock - classical
in the second period. By comparing the rates across periods, a global impression
of the dynamics can be gained. The estimates obtained indicate that friendship
stabilizes over time (the rate of change settles down), the two major music di-
mensions techno and rock stay about constant, while the dimensions classical
and alcohol consumption show an increase in their ‘reconsideration frequency’
over time.

In the current application, no problems with the rate parameters were en-
countered. In general, however, high rate parameters are a cause of concern,
as they indicate that under the given model specification, the actors have to
undergo a tremendous if not unreasonable amount of small changes in order to
come up with a global dynamic that resembles the observed one. In the worst
and irreparable case, this can mean that the panel waves are too broadly spaced,
such that earlier observations do not serve well for explaining later observations.
If this is the case, it may make more sense to analyze the different measurements
separately than to attempt a longitudinal SIENA analysis.

Other possible reasons for such divergence can be model misspecification,
either in the objective function or in the rate function. Both functions should be
able to account for sufficient heterogeneity of actors. Actors that have a strong
impact on the estimation algorithm (‘outliers’ on some network or behavioral
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dimension) should be treated as the special cases they are, by including effects
in the model specification that allow for singling them out. In the extreme
case, even a mismatch between the whole model family and the data is possible.
When it is impossible to reasonably and sufficiently model the observed actor
heterogeneity (e.g., because heterogeneity at a later measurement point simply
cannot be predicted from earlier observations, with the available data), it may
make sense to recode the data such that they become more homogeneous.

For the user of SIENA, a situation of rate parameter divergence thus may
most fruitfully be responded to by looking at outliers on the submodel’s depen-
dent variable and at the measurement point at the end of the period where the
divergence occurred, and then adjust model or data accordingly.

Objective function parameters

For the interpretation of the objective functions’ parameters (both network and
behavioral), we recommend to safeguard against a couple of misunderstand-
ings. Because the temporal progression is taken care of by the rate functions,
the objective functions are inherently static. What they express thus is not a
description of behavioral tendencies over time, but satisfaction measures that
are suitable for explaining these observed changes under the assumption that
actors are myopic satisfaction maximizers who, however, start out in a network
neighborhood and with an own set of behaviors that may be far from optimal.

The parameter estimated for the outdegree effect in the network objective
function is negative, which is the case in many empirical applications. The
negative sign indicates that for the model actors, the existence of a tie to an
arbitrary alter brings negative satisfaction - i.e., that ties are costly, and that
the actor has a preference against having such ties unless other properties of
the tie compensate for these costs. The negative sign does not mean that the
total amount of ties would go down over time. It is true that the more negative
this parameter gets, the smaller the average number of ties in the equilibrium
distribution of the Markov process. However, whether or not the number of
ties in the modeled network evolution process increases or decreases over time
under a given configuration of parameter values, depends not on this equilibrium
distribution alone, but also on the starting network. If there are very few ties
in the beginning, the number is predicted to increase despite all costs involved
- while if there are very many ties already, the number is likely to decrease.
The same argument holds for the behavioral tendency parameters: they express
tendencies in satisfaction, not tendencies over time.

In a similar way, the other parameters need to be interpreted as affecting sat-
isfaction of the actor, and not as trends over time. E.g., the positive reciprocity
effect that was estimated from our data means that the costs of having a tie
to a random other (negative outdegree parameter) are more than compensated
when this tie is reciprocated by the other — the net value of this tie to the actor
being positive (—1.89 + 2.34 = 0.45). Likewise, the negative effect of classical
on the rock dimension means that the general positive evaluation of rock that
is expressed in the tendency parameter is zeroed out for scores of 2 or higher on
the classical dimension (0.59 — 2 x 0.34 = —0.09), the net value of listening to
rock music being negative for such actors.

Also in the objective functions, model convergence can become an issue.
Here, it is the classical issue of collinearity that plays a role. Accordingly, con-
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vergence problems related to objective function parameters can be addressed
best by only including parameters into the model specification that are not
overly correlated. However, there is considerable tolerance of the estimation
algorithm even for correlation levels of 0.8 or higher between parameter estima-
tors, which can and do occur among endogenous network parameters (e.g. the
two transitivity-related parameters distance-2 as used in the present analysis,
and the effect of transitive triplets that is more broadly applied; Snijders 2001).

Finally, the random utility formalism of the model should not be mistaken
to imply that all connotations evoked by the utility concept would hold. First,
there are multiple objective functions instead of one overarching utility function,
indicating that the model is closer to models of rational goal pursuit than to
microeconomic utility models (Steglich 2003). Second, the myopic optimization
character of the model means that the objective functions express what the ac-
tors seem to optimize on the short run, without any strategic foresight. And
third, some effects may better be interpreted as constraints than as incentives
or disincentives. For instance, the negative distance-2 parameter estimate, in-
dicating that actors tend to shorten indirect links to friends’ friends and turn
them into direct friends, may better be interpreted as a result of opportunity
structure than as a result of ‘genuine preference’. When friends meet each other,
they are likely to also be around with other friends, creating a social situation
in which such transitive closure is more likely to happen than other types of
friendship formation.

5 Conclusion

We showed how panel data on the dynamics of social networks and behavioral
dimensions can be analyzed by making use of actor-driven models. Interdepen-
dent dynamics of this sort are characteristic for several active research topics,
such as the spread of health-related behaviors in a network, the effects of com-
munication networks on the individual, or the benefit which firms have from
forming alliances. The particular application studied in the empirical part con-
cerned the mutual effects of music listening and friendship on each other, which
was investigated in a cohort of adolescents. It was shown how relatively complex
hypotheses about status hierarchies underlying the dynamics of music listening
could be tested in a straightforward way. The data were estimated with help
of the SIENA software (Snijders et al. 2005) that can be downloaded for free at
http://stat.gamma.rug.nl/stocnet/. Model estimates suggested a social hierarchy
of music listening habits, in which the rock dimension dominated the techno di-
mension. Listening habits on the classical dimension were shown to be related
to a special group of pupils, and could not be positioned in this hierarchy.

The limitations of the particular application we presented largely pertain
to the operationalization of taste in music. On the one hand, while fashion
waves in music are known to refer in the first place to the popularity of in-
dividual artists, our data was available only for whole music genres. On the
other hand, the scales we constructed, while having intuitive appeal, showed
relatively little internal consistency. This renders our results exploratory rather
than conclusive. Further, the study was limited to straightforward tests of model
parameters, which express ‘micro behavior’, i.e., the actions of individuals. An
area still underexplored is the empirical relationship of such micro behavior of
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network actors to macro phenomena like segregation or segmentation of a social
network (Baerveldt & Snijders 1994). In the study of fashion phenomena, this
is of particular interest. According to Bourdieu (1984), fads and fashions serve
for social differentiation and identity creation, i.e., for the creation of social
boundaries. Such segregation phenomena have in the first place been studied
in small group experiments in the context of social identity theory (Hogg et al.
2004) or on the macro level (Bourdieu 1984), but it is not clear to what degree
the macro phenomena charted by the latter type of research can be explained
by the individual-level processes identified by the former type of research.

A network study, which becomes possible with the actor oriented approach
sketched in this paper, may be able to bridge the gap between the more cog-
nitively oriented small group research and the segregation phenomena observed
on the macro level. In the SIENA framework, it is easily possible to run sim-
ulations according to a given model parametrization. Usually, with the help
of such simulation runs, model parameters are estimated from empirical data.
However, once such ‘realistic’ model parameters have been obtained, they can
also be used for running a couple more simulations for generating artificial data
sets on the co-evolution of friendship and music taste. The statistical analysis of
such empirically-informed simulations can be of help for assessing the impact of
particular micro phenomena related to social identity (and expressed in model
parameters) on properties of the emerging global dynamics (segregation on the
macro level).
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Submodel Parameter Estimate | St. Error | p-value
network outdegree —1.89 0.29 | < 0.001
rectprocity 2.34 0.12 | <0.001
distance-2 —1.09 0.07 | <0.001
gender homophily 0.80 0.12 | < 0.001
gender ego 0.24 0.11 0.030
gender alter —0.21 0.12 0.083
techno homophily 0.08 0.33 0.798
techno ego —0.10 0.05 0.053
techno alter 0.07 0.05 0.194
rock homophily 0.11 0.41 0.791
rock ego —0.07 0.08 0.357
rock alter 0.19 0.07 0.006
classical homophily 1.44 0.69 0.039
classical ego 0.40 0.17 0.015
classical alter 0.15 0.17 0.362
alcohol homophily 0.83 0.27 0.002
alcohol ego —0.03 0.03 0.397
alcohol alter —0.03 0.04 0.456
rate period 1 12.45 1.54 | < 0.001
rate period 2 9.56 1.08 | < 0.001
techno tendency 0.01 0.25 0.960
assimilation 0.45 0.18 0.014
gender 0.25 0.12 0.035
rock —0.34 0.10 | < 0.001
classical —0.13 0.23 0.577
alcohol 0.07 0.10 0.500
rate period 1 3.40 0.79 | <0.001
rate period 2 3.46 0.78 | < 0.001
rock tendency 0.59 0.25 0.016
assimilation 0.63 0.28 0.024
gender 0.01 0.19 0.966
techno —0.25 0.09 0.003
classical —0.34 0.30 0.260
alcohol 0.11 0.07 0.116
rate period 1 2.04 0.42 | < 0.001
rate period 2 2.24 0.47 | <0.001
classical tendency 0.67 1.30 0.606
assimilation 0.42 1.17 0.716
gender 1.57 0.83 0.057
techno —0.46 0.40 0.250
rock 0.64 0.39 0.106
alcohol —1.03 0.34 0.002
rate period 1 0.63 0.38 0.096
rate period 2 1.43 0.55 0.010
alcohol tendency —0.30 0.37 0.420
assimilation 0.94 0.27 | < 0.001
gender —0.06 0.19 0.745
techno 0.23 0.16 0.145
rock 0.16 0.16 0.318
classical —0.59 0.32 0.067
rate period 1 1.54 0.36 | < 0.001
rate period 2 2.50 0.54 | <0.001

Table 1: SIENA estimation results for the full model. Effects labeled in italics

indicate significance at « = 0.05 (two-sided test).



ego

alter

techno rock classical
techno —0.06 0.25 —1.39
rock —0.15 0.54 —1.31
classical 0.02 0.50 1.73

Table 2: Contributions of music taste configurations to the network objective
function, as derived from the estimates in Table 1 (calculations refer to highest
possible scores and mutually exclusive music tastes).

increase

impact on odds

techno rock classical
techno — —40% —60%
rock —50% — +256%
classical  +29%  —49% —

Table 3: Impact of increasing the score on one music dimension on the odds of
increasing versus decreasing the score on the other music dimensions, as derived
from the estimates in Table 1.



