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Abstract

While in Euclidean, equiaffine or centroaffine differential geometry
there exists a unique, distinguished normalization of a regular hypersur-
face immersion x : Mn → An+1, in the geometry of the general affine
transformation group, there only exists a distinguished class of such nor-
malizations, the class of relative normalizations. Thus, the appropriate
invariants for speaking about affine hypersurfaces are invariants of the
induced classes, e.g. the conformal class of induced metrics and the pro-
jective class of induced conormal connections. The aim of this paper is to
study such invariants. As an application, we reformulate the fundamental
theorem of affine differential geometry.
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All connections that appear in this paper shall be assumed as torsionless
and admitting a parallel volume form. As a general reference, see [S-S-V 91].

1 Conjugacy

Definition 1.1 Let (M,h) be a semi-riemannian manifold, ∇,∇? connections
on M . Then the triple {∇, h,∇?} is called conjugate if

∀u, v, w : uh(v, w) = h(∇uv, w) + h(v,∇?
uw).

Note that h and one of the connections uniquely determine the other, ‘conju-
gate’ connection.

For the main theorems, we will need the following three results about con-
jugate triples: (The proofs can be found in [No-Si 91].)

Lemma 1.2 (Characterization of Conjugacy)
Let h,∇,∇? as above. Then

{∇, h,∇?} conjugate ⇔
{

1
2 (∇+∇?) = ∇(h)
{∇, h} is a Codazzi pair1,

where ∇(h) shall denote the Levi-Cività-connection corresponding to h.
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1∇ and h satisfy Codazzi equations.
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Lemma 1.3 (Conjugacy and Curvature)
Let {∇, h,∇?} be a conjugate triple. Then the following conditions hold:

a) ∀u, v, w, z : h(R(u, v)w, z) + h(w,R?(u, v)z) = 0,

b) tracehRic = tracehRic? =: r,

where R,R?, Ric,Ric? are the Riemannian curvature tensors and Ricci tensors
corresponding to ∇,∇?, resp.

Lemma 1.4 (Conjugate Codazzi Equations)
Let {∇, h,∇?} be a conjugate triple, Ŝ a bilinear form on M . Then

({∇?, Ŝ} is a Codazzi pair) ⇔ ({∇, S} is a Codazzi pair),

where S is implicitly defined by ∀v, w : h(Sv, w) = Ŝ(v, w). (We also write
S = Ŝh.)

2 Conformal and Projective Structures

Definition 2.1 Let M be a differentiable manifold.

a) Let f, f ] ∈ C∞(M). Define f ∼ f ] :⇔ f − f ] = const.
τ ∈ C∞(M)/∼ is called transformation function.

b) Let h, h] be semi-riemannian metrics on M . They are called conformally
equivalent if
h] = exp(2τ)h for some transformation function τ .
Notation: C(h) := {h] | h, h] conformally equivalent }.

c) Let ∇?,∇?] be connections on M . They are called strongly projectively
equivalent if
∀v, w : ∇?]

v w = ∇?
vw + 2dτ(v)w + 2dτ(w)v for some transformation func-

tion τ .
Notation: P(∇?) := {∇?] | ∇?,∇?] strongly projectively equivalent }.

d) Let C as above, ∇,∇] be connections on M . They are called conpro-
jectively equivalent if ∀v, w : ∇]

vw = ∇vw − 2h(v, w)gradhτ for some
transformation function τ .
Notation: KC(∇) := {∇] | ∇,∇] conprojectively equivalent }.

Remark 2.2 Usually, two connections∇?,∇?] are called projectively equivalent
if there exists a one-form θ such that ∀v, w : ∇?]

v w = ∇?
vw+θ(v)w+θ(w)v. How-

ever, if both connections have symmetric Ricci tensors (or, equivalently, they
admit parallel volume forms, which was our general assumption), then the one-
form θ satisfies dθ = 0, which means that, locally, they are strongly projectively
equivalent in the sense of the definition above. If, additionally, the manifold M
is simply connected, we have θ = 2dτ globally for some transformation function
τ .
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Motivation for the choice of the notion ‘conprojective’
Let {∇, h,∇?} and {∇], h],∇?]} be conjugate triples. The metrics shall satisfy
h] = exp(2τ)h for some transformation function τ . Then:(

∇]
vw = ∇vw − 2h(v, w)gradhτ

)
⇔

(
∇?]

v w = ∇?
vw + 2dτ(v)w + 2dτ(w)v

)
,

so ∇],∇ are conprojectively equivalent iff their conjugate connections ∇?],∇?

are strongly projectively equivalent.
For further results about conprojective equivalence, see [Iva-94].

Lemma 2.3 (Conjugacy as an Invariant)
Let {∇, h,∇?} be a (not necessarily conjugate) triple and let τ be a trans-
formation function. {∇], h],∇?]} shall denote the triple we get if we change
{∇, h,∇?} with τ according to 2.1. Then

({∇, h,∇?} is a conjugate triple) ⇔ ({∇], h],∇?]} is a conjugate triple).

In this case of conjugacy, let Con(KC , C,P) denote the class of conjugate triples
we get from C(h),P(∇?) and KC(∇).

The proof is a simple calculation.

3 Affine Hypersurfaces

In this section, we recall some basic facts from affine hypersurface theory. Let
M here be a connected, simply connected differentiable manifold. Let x : Mn →
An+1 be a regular2 hypersurface immersion and {Y, y} a relative normalization
of x.

Definition 3.1 (Structure Equations)
The geometry of An+1 induces, via the triple {x, Y, y}, the following quantities
on M :

∇vdx(w) = dx(∇vw) + h(v, w)y
dy(w) = −dx(Sw)

∇vdY (w) = dY (∇?)− Ŝ(v, w)Y.

Lemma 3.2 The induced quantities have the following properties:

a) h is a semi-riemannian metric,

b) ∇,∇? are torsionless connections which admit parallel volume forms,

c) {∇, h,∇?} is a conjugate triple,

d) (n− 1)Ŝ = Ric? and h(Sv, w) = h(v, Sw) = Ŝ(v, w).

Remark 3.3 If {Y, y} is a relative normalization of the hypersurface x, let
{Y ], y]} be another one with Y ] = exp(2τ)Y . Then the corresponding induced
conjugate triples {∇, h,∇?}, {∇], h],∇?]} change as in 2.1. So a regular affine
hypersurface induces a structure of the type Con(KC , C,P).

2A hypersurface immersion x into affine space is called regular if, for an arbitrary conormal
field Y , the bilinear form 〈dx, dY 〉 is nondegenerate.
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In 1990, Dillen, Nomizu and Vrancken formulated the following version of
the fundamental theorem of (equi-)affine geometry (see [D-N-V 90]):

Theorem 3.4 (Existence of Affine Hypersurfaces)
Let M be a manifold as above, h a semi-riemannian metric on M and ∇

a connection on M . Assume that {∇, h} is a Codazzi pair. ∇? shall denote
the connection that makes {∇, h,∇?} a conjugate triple. Then the following
conditions are equivalent:

a) There exists a hypersurface immersion x : Mn → An+1 together with a
relative normalization {Y, y} which induce {∇, h,∇?} as in 3.1.

b) ∇? is projectively flat.

4 Invariants of Con(KC, C,P)

We now study some invariants of the structures we introduced in section 2.
{∇, h,∇?} shall denote an arbitrary representative of the class Con(KC , C,P).

Definition 4.1 (Flatness of Con(KC , C,P))
From 1.3 we know that, for a conjugate triple {∇, h,∇?}, ∇ is a flat connection
iff ∇? is one. If in Con(KC , C,P) there exists such a triple with flat connections,
we say that Con(KC , C,P) is flat.

Of course, flatness is by definition an invariant of Con(KC , C,P).

Lemma 4.2 (Conjugation of Weyl’s Projective Curvature Tensor)
The following tensor K1 is an invariant of Con(KC , C,P):

∀u, v, w : K1(u, v)w := R(u, v)w − 1
n− 1

(h(v, w)Ric?h(u)− h(u, w)Ric?h(v)).

Proof: Just check with 1.3 that

h(K1(u, v)w, z) + h(w,P ?(u, v)z) = 0,

where the projective curvature tensor P ? is given by

∀u, v, w : P ?(u, v)w := R?(u, v)w − 1
n− 1

(Ric?(v, w)u−Ric?(u, w)v).

It is well-known that P ? is an invariant of P.

Lemma 4.3 (See Kurose in [Kur 91])
The tensor K2 defined by:

∀u, v, w : K2(u, v)w := R(u, v)w + (h(v, w)Rich(u)− h(u, w)Rich(v))

− r

n− 1
(h(v, w)u− h(u, w)v)

is an invariant of Con(KC , C,P).

For the proof, calculate the transformation of the curvature tensors.

The tensor K2 is the traceless part of the tensor K1. More precisely, we have
the following results:
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Lemma 4.4 (The Invariant Bilinear Form)
Let K1,K2 as above. Define

∀u, v : B(u, v) := (n− 1)Ric(K1)(u, v) := (n− 1)trace(z 7→ K1(z, u)v).

Then the following holds:

a) B = (n− 1)Ric + Ric? − rh,

b) B is an invariant of Con(KC , C,P),

c) (B = 0) ⇔ (K1 = K2),

d) (Con(KC , C,P) flat) ⇒ (B ≡ 0),

e) in general, B 6≡ 0.

Proof: a),b),c), and d): straightforward. For proving e), consider the conjugate
triple {∇(h), h,∇(h)}, where h is an arbitrary semi-riemannian metric on M .
From a) we immediately see that B ≡ 0 means that (M,h) is an Einstein space,
which generally is not true.
Problem: It is still an open question whether the converse of part d) in the
preceding lemma holds: does the identical vanishing of the bilinear form B imply
the flatness of Con(KC , C,P)? Of course, this could only be true for dimensions
n ≥ 3, for in dimension two, we always have B ≡ 0.

5 The Fundamental Theorem of Affine Hyper-
surface Theory

We now want to reformulate the fundamental theorem 3.4 for affine hypersur-
faces without referring to any particular normalization. A first version of this
type was given in [Si 92].

Theorem 5.1 (Fundamental Theorem, reformulated)
Let M be a connected, simply connected differentiable manifold. On M , a class
Con(KC , C,P) of conjugate triples shall be given. Then the following conditions
are equivalent:

a) There exists a hypersurface immersion x : Mn → An+1 which induces
Con(KC , C,P) as described in 3.3.

b) Con(KC , C,P) is flat.

Proof: Combine theorem 3.4 with remark 3.3 and the definition 4.1 of flatness.

The problem now is to find characterizations for flatness of Con(KC , C,P).

Theorem 5.2 (First Characterization)
Let Con(KC , C,P) be given on M . Then

Con(KC , C,P) is flat ⇔
{

a) K1 ≡ 0,
b) {∇, Ric?h} is a Codazzi pair.
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Proof: Conjugate Weyl’ s well-known characterization of projective flatness,
use lemma 1.4 and the definition of K1.

Theorem 5.3 (Second Characterization, Kurose)
Let Con(KC , C,P) be given on M . Then

Con(KC , C,P) is flat ⇔
{

a) K2 ≡ 0,
b) {∇, r

n−1Id−Rich} is a Codazzi pair.

Proof: Calculate the integrability conditions for the existence of a flat connec-
tion ∇] that is conprojectively equivalent to ∇.

Remark 5.4 In the characterization theorems above, we have the following
relations between the conditions a) and b):
n = 2 : condition a) holds trivially,
n > 2 : condition a) implies condition b).
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