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Abstract

While in Euclidean, equiaffine or centroaffine differential geometry
there exists a unique, distinguished normalization of a regular hypersur-
face immersion z : M™ — A"l in the geometry of the general affine
transformation group, there only exists a distinguished class of such nor-
malizations, the class of relative normalizations. Thus, the appropriate
invariants for speaking about affine hypersurfaces are invariants of the
induced classes, e.g. the conformal class of induced metrics and the pro-
jective class of induced conormal connections. The aim of this paper is to
study such invariants. As an application, we reformulate the fundamental
theorem of affine differential geometry.
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All connections that appear in this paper shall be assumed as torsionless
and admitting a parallel volume form. As a general reference, see [S-S-V 91].

1 Conjugacy
Definition 1.1 Let (M, h) be a semi-riemannian manifold, V,V* connections
on M. Then the triple {V,h,V*} is called conjugate if

Yu, v, w : uh(v,w) = (Vyv,w) + h(v, Viw).

Note that h and one of the connections uniquely determine the other, ‘conju-
gate’ connection.

For the main theorems, we will need the following three results about con-
jugate triples: (The proofs can be found in [No-Si 91].)

Lemma 1.2 (Characterization of Conjugacy)
Let h,V,V* as above. Then

3(V+ V") =V(h)

{V, h, V") conjugate < { {V,h} is a Codazzi pair',

where V(h) shall denote the Levi-Civita-connection corresponding to h.
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1V and h satisfy Codazzi equations.



Lemma 1.3 (Conjugacy and Curvature)
Let {V,h,V*} be a conjugate triple. Then the following conditions hold:

a) Yu,v,w, z : h(R(u,v)w, z) + h(w, R*(u,v)z) =0,
b) tracepRic = tracep Ric* =: r,

where R, R*, Ric, Ric* are the Riemannian curvature tensors and Ricci tensors
corresponding to V,V*, resp.

Lemma 1.4 (Conjugate Codazzi Equations)
Let {V,h,V*} be a conjugate triple, S a bilinear form on M. Then

({V*,8} is a Codazzi pair) < ({V, S} is a Codazzi pair),

~

where S is implicitly defined by Yv,w : h(Sv,w) = S(v,w). (We also write
§=35")

2 Conformal and Projective Structures

Definition 2.1 Let M be a differentiable manifold.

a) Let f, f* € C°(M). Define f ~ f*: f— f* = const.
T € C®(M)/~ is called transformation function.

b) Let h,h? be semi-riemannian metrics on M. They are called conformally
equivalent if
ht = exp(27)h for some transformation function T.
Notation: C(h) := {h* | h,h* conformally equivalent }.

¢) Let V*,V** be connections on M. They are called strongly projectively

equivalent if
Yo, w: Vifw = Viw + 2d7(v)w + 2d7(w)v for some transformation func-
tion T.

Notation: P(V*) := {V* | V* V*¥ strongly projectively equivalent }.

d) Let C as above, V,V¥ be connections on M. They are called conpro-
jectively equivalent if Yv,w : Viw = V,w — 2h(v,w)grad,t for some
transformation function T.

Notation: K¢ (V) = {V*| V,V* conprojectively equivalent }.

Remark 2.2 Usually, two connections V*, V*# are called projectively equivalent
if there exists a one-form 6 such that Vo, w : Vw = Viw+60(v)w+0(w)v. How-
ever, if both connections have symmetric Ricci tensors (or, equivalently, they
admit parallel volume forms, which was our general assumption), then the one-
form @ satisfies d = 0, which means that, locally, they are strongly projectively
equivalent in the sense of the definition above. If, additionally, the manifold M
is simply connected, we have § = 2dt globally for some transformation function
T.



Motivation for the choice of the notion ‘conprojective’
Let {V,h,V*} and {V¥ h¥ V**} be conjugate triples. The metrics shall satisfy
h* = exp(27)h for some transformation function 7. Then:

(ng = Vyw — 2h(v,w)grad,t) < (V:ﬁw = Viw + 2d7(v)w + 2d7(w)v) ,

so V#,V are conprojectively equivalent iff their conjugate connections V*#, V*
are strongly projectively equivalent.
For further results about conprojective equivalence, see [Iva-94].

Lemma 2.3 (Conjugacy as an Invariant)
Let {V,h,V*} be a (not necessarily conjugate) triple and let T be a trans-
formation function. {V* h¥ V**} shall denote the triple we get if we change
{V,h,V*} with T according to 2.1. Then

({V,h,V*} is a conjugate triple) < ({V* h*,V**} is a conjugate triple).

In this case of conjugacy, let Con(Ke,C,P) denote the class of conjugate triples
we get from C(h), P(V*) and K¢ (V).

The proof is a simple calculation.

3 Affine Hypersurfaces

In this section, we recall some basic facts from affine hypersurface theory. Let
M here be a connected, simply connected differentiable manifold. Let x : M™ —
A" be a regular? hypersurface immersion and {Y,y} a relative normalization
of z.

Definition 3.1 (Structure Equations)
The geometry of A" induces, via the triple {x,Y,y}, the following quantities
on M:

Vedz(w) = dz(V,w)+ h(v,w)y
dy(w) = —dz(Sw)
VodY(w) = dY(V*)—S(v,w)Y.

Lemma 3.2 The induced quantities have the following properties:
a) h is a semi-riemannian metric,
b) V,V* are torsionless connections which admit parallel volume forms,
¢) {V,h,V*} is a conjugate triple,
d) (n—1)8 = Ric* and h(Sv,w) = h(v, Sw) = S(v, w).

Remark 3.3 If {Y,y} is a relative normalization of the hypersurface x, let
{Y* 4%} be another one with Y* = exp(27)Y. Then the corresponding induced
conjugate triples {V,h, V*},{V*, ht, V*} change as in 2.1. So a regular affine
hypersurface induces a structure of the type Con(K¢,C,P).

2A hypersurface immersion « into affine space is called regular if, for an arbitrary conormal
field Y, the bilinear form (dz,dY’) is nondegenerate.



In 1990, Dillen, Nomizu and Vrancken formulated the following version of
the fundamental theorem of (equi-)affine geometry (see [D-N-V 90]):

Theorem 3.4 (Eristence of Affine Hypersurfaces)

Let M be a manifold as above, h a semi-riemannian metric on M and V
a connection on M. Assume that {V,h} is a Codazzi pair. V* shall denote
the connection that makes {V,h,V*} a conjugate triple. Then the following
conditions are equivalent:

a) There exists a hypersurface immersion x : M™ — A™! together with a
relative normalization {Y,y} which induce {V,h,V*} as in 3.1.

b) V* is projectively flat.

4 Invariants of Con(K¢,C,P)

We now study some invariants of the structures we introduced in section 2.
{V, h, V*} shall denote an arbitrary representative of the class Con(K¢,C,P).

Definition 4.1 (Flatness of Con(K¢,C,P))

From 1.3 we know that, for a conjugate triple {V,h,V*}, V is a flat connection
iff V* is one. If in Con(K¢,C,P) there exists such a triple with flat connections,
we say that Con(Ke,C,P) is flat.

Of course, flatness is by definition an invariant of Con(K¢,C,P).

Lemma 4.2 (Conjugation of Weyl’s Projective Curvature Tensor)
The following tensor K is an invariant of Con(Ke,C,P):

Yu, v, w : Ki(u,v)w := R(u,v)w — ﬁ(h(v, w)Ric*" (u) — h(u, w)Ric*™ (v)).

Proof: Just check with 1.3 that
h(K;(u,v)w, z) + h(w, P*(u,v)z) =0,

where the projective curvature tensor P* is given by

1
Yu,v,w : P*(u,v)w = R*(u, v)w — 71(Ric*(v, w)u — Ric*(u,w)v).
It is well-known that P* is an invariant of P.

Lemma 4.3 (See Kurose in [Kur 91])
The tensor Ko defined by:

Vu,v,w: Ko(u,v)w = R(u,v)w + (h(v,w)Ric"(u) — h(u, w)Ric"(v))

_ m(h(v, w)u — hu,w)v)

is an invariant of Con(K¢,C,P).

For the proof, calculate the transformation of the curvature tensors.

The tensor K5 is the traceless part of the tensor K. More precisely, we have
the following results:



Lemma 4.4 (The Invariant Bilinear Form)
Let K1, K5 as above. Define

Yu,v : B(u,v) := (n — 1)Ric(K1)(u,v) := (n — 1)trace(z — Kq(z,u)v).
Then the following holds:
a) B = (n —1)Ric + Ric* — rh,
b) B is an invariant of Con(Kc,C,P),
¢) (B=0) & (K = K»),
d) (Con(K¢,C,P) flat) = (B=0),
e) in general, B # 0.

Proof: a),b),c), and d): straightforward. For proving e), consider the conjugate
triple {V(h), h,V(h)}, where h is an arbitrary semi-riemannian metric on M.
From a) we immediately see that B = 0 means that (M, h) is an Einstein space,
which generally is not true.

Problem: It is still an open question whether the converse of part d) in the
preceding lemma holds: does the identical vanishing of the bilinear form B imply
the flatness of Con(K¢,C,P)? Of course, this could only be true for dimensions
n > 3, for in dimension two, we always have B = 0.

5 The Fundamental Theorem of Affine Hyper-
surface Theory

We now want to reformulate the fundamental theorem 3.4 for affine hypersur-
faces without referring to any particular normalization. A first version of this
type was given in [Si 92].

Theorem 5.1 (Fundamental Theorem, reformulated)

Let M be a connected, simply connected differentiable manifold. On M, a class
Con(Ke,C,P) of conjugate triples shall be given. Then the following conditions
are equivalent:

a) There exists a hypersurface immersion x : M™ — A™! which induces
Con(K¢,C,P) as described in 3.3.

b) Con(K¢,C,P) is flat.
Proof: Combine theorem 3.4 with remark 3.3 and the definition 4.1 of flatness.
The problem now is to find characterizations for flatness of Con(K¢,C,P).

Theorem 5.2 (First Characterization)
Let Con(K¢,C,P) be given on M. Then

. a) Kl = Oa
Con(Ke,C,P) is flat < { b) {V,Ric*"} is a Codazzi pair.



Proof: Conjugate Weyl’s well-known characterization of projective flatness,
use lemma 1.4 and the definition of Kj.

Theorem 5.3 (Second Characterization, Kurose)
Let Con(K¢,C,P) be given on M. Then

, a) Ky=0,
Con(Ke,C,P) is fiat & { b) {V,-5Id— Ric"} is a Codazzi pair.
Proof: Calculate the integrability conditions for the existence of a flat connec-

tion V* that is conprojectively equivalent to V.

Remark 5.4 In the characterization theorems above, we have the following
relations between the conditions a) and b):

n=2: condition a) holds trivially,

n >2: condition a) implies condition b).
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