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Social networks:

structures of relations between individuals.

Older studies of social support and influence

considered networks as independent variables

for explaining well-being (etc.);

this later led to studies of

network resources, social capital, solidarity,

in which the network is also a dependent variable.

Networks are dependent as well as independent variables:

intermediate structures in macro–micro–macro phenomena.

In this presentation:

focus first on networks as dependent variables,

then on mutual dependence networks and behavior

(‘behavior’ stands here also for other individual attributes).

← →
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Single observations of networks are snapshots,

the results of untraceable history.

Therefore, explaining them has limited importance.

Longitudinal modeling offers more promise

for understanding of network structure.

The more descriptively oriented type of statistical modeling

of linear regression analysis etc.

cannot be transplanted to network analysis,

where the focus has to be on modeling dependencies.

Instead, longitudinal statistical modeling of networks

relies heavily on modest process modeling:

purposeful actors who optimize myopically

according to random utility models

subject to weak & limited rationality postulates.

← →
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Longitudinal data collection and modeling of social networks

has an important advantage over use of one-moment observations:

for modeling a single observation of a network,

“everything depends on everything else”,

which leads to big problems in modeling and statistical inference;

for longitudinal modeling of social networks,

the first observation may be taken as given rather than modeled,

and then the remaining dependence is unidirectional in time

and less difficult to model.

← →



⇐ Tom A.B. Snijders Evolution Social Networks 5

1. Networks as dependent variables

Repeated measurements on social networks:

at least 2 measurements (preferably more).

Data requirements:

The repeated measurements must be close enough together,

but the total change between first and last observation

must be large enough

in order to give information about rules of network dynamics.

Go to modeling principles

← →
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Example:

Studies Gerhard van de Bunt

1. Study of 32 freshman university students,

7 waves in 1 year.

See van de Bunt, van Duijn, & Snijders,

Computational & Mathematical Organization Theory,

5 (1999), 167 – 192.

2. Study of hospital employees,

2 departments (49 and 30 actors), 4 waves.

This presentation concentrates on the first data set,

which can be pictured by the following graphs

(arrow stands for ‘best friends’).

← →
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Friendship network time 1.

Average degree 0.0; missing fraction 0.0.

← →
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Friendship network time 2.

Average degree 0.7; missing fraction 0.06.

← →
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Friendship network time 3.

Average degree 1.7; missing fraction 0.09.

← →
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Friendship network time 4.

Average degree 2.1; missing fraction 0.16.

← →
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Friendship network time 5.

Average degree 2.5; missing fraction 0.19.

← →



⇐ Tom A.B. Snijders Evolution Social Networks 12

Friendship network time 6.

Average degree 2.9; missing fraction 0.04.

← →
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Friendship network time 7.

Average degree 2.3; missing fraction 0.22.

← →
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Which conclusions can be drawn from such a data set?

Dynamics of social networks are complicated
because “network effects” are endogenous feedback effects:
e.g., reciprocity, transitivity, popularity, subgroup formation.

In much other work:

; computer simulation used in network analysis for
investigation of theoretical properties:
rich models.

For statistical modeling, one goes no further
than what can be estimated from data:
parsimonious modeling.

However, the statistical models must do justice
to the complexities of network structure:
complicated enough to be realistic,
not more complicated than necessary .

← →
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For a correct interpretation of empirical observations,

it is crucial to consider a model with latent change going on

more or less continuously between the observation moments.

E.g., groups may be regarded as the result of the coalescence

of relational dyads helped by a process of transitivity

(“friends of my friends are my friends”).

Which groups form may be contingent on unimportant details;

that groups will form is a sociological regularity.

Therefore: use dynamic models with continuous time parameter :

time runs on between observation moments.

← →
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An advantage of using continuous-time

models, even if observations are made at a few discrete time points,

is that a more natural and simple representation may be found,

especially in view of the endogenous dynamics.

(cf. Coleman, 1964).

No problem with irregularly spaced data.

For discrete data:

Kalbfleisch & Lawless, JASA, 1985;

for continuous data:

mixed state space modelling well-known in engineering,

in economics e.g. Bergstrom (1976, 1988),

in social science Tuma & Hannan (1984),

work by H. Singer in the 1990s.

Here: discrete data with complicated structure.

← →
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Purpose of statistical inference:

investigate network evolution as function of

1. structural effects (reciprocity, transitivity, etc.)

2. explanatory actor variables

3. explanatory dyadic variables

all controlling for each other.

By controlling adequately for structural effects, it is possible

to test hypothesized effects of variables on network dynamics

(without such control these tests would be unreliable).

The structural effects imply that the presence of arcs

is highly dependent on the presence of other arcs.

← →
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Principles for this approach to analysis of network dynamics:

∗ use simulation models as models for data

∗ comprise a random influence in the simulation model

to account for ‘unexplained variability’

∗ develop statistical inference

for probability models implemented as simulation models

∗ employ a continuous-time model

(even if observations are at discrete time points)

to represent endogenous network evolution

∗ condition on the first observation

and refrain from modeling it:

no stationarity assumption.

← →
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Notation and assumptions

(some of which may and will be relaxed):

1. Actors i = 1, . . . , n (individuals in the network),

pattern X of ties between them :

one, binary, network X;

Xij = 0, or 1 if there is no tie, or a tie, from i to j.

2. Exogenously determined independent variables:

actor-dependent covariates vh, dyadic covariates wh.

These can be constant or changing over time.

3. Although the data collection may follow a panel design,

in the underlying model, time (t) is a continuous parameter.

4. The change process is stochastic.

5. The current state of the network
(
X(t)

)
acts as a dynamic constraint for its own process of change:

Markov process.

← →
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6. The actors control their outgoing ties.

7. The ties have inertia: they change in small steps.
At any single moment in time,
only one variable Xij(t) may change.

8. Changes are made by the actors to optimize their situation,
as it will obtain immediately after this change.

9. Assessment by actors of their situation comprises
random element, expressing aspects not modeled explicitly.

(8) and (9): goal-directed behavior,
in the weak sense of myopic stochastic optimization.

Assessment of the situation is represented by
objective function, interpreted as
‘that which the actors seem to strive after in the short run’.

← →
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Further elaboration:

At randomly determined moments t,
actors i have opportunity to change a tie variable Xij: micro step.
(It is also allowed not to change anything.)
The frequency of such micro steps is determined
by rate functions.

If the rate of change of the network by actor i is λi ,
this means that, for a certain short time interval (t, t + ε),
the probability that this actor randomly gets an opportunity
to change one of his/her outgoing ties, is given by ε× λi .

When a micro step is taken,
the actor optimizes an objective function
which is the sum of a deterministic and a random part.
The random part reflects unexplained variation.

← →
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Specification: rate function

‘how fast is change / opportunity for change ?’

Rate functions can depend on the observation period (tm−1, tm),

actor covariates, actor behavior, and network position,

through an exponential link function.

In a simple specification, the rate functions

are constant within periods.

Network rate functions could also e.g. increase with out-degrees:

more activity ∼ more change,

especially for strongly heterogeneous actors.

← →
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Specification: objective function

‘what is the direction of change?’

Objective functions for the network will be defined as the sum of:

1. evaluation function, expressing satisfaction
with the network;

2. endowment function, expressing aspects of satisfaction
with the network
that are obtained ‘free’ but are lost at a value
(to allow asymmetry between creation and deletion of ties);

3. random variable with a Gumbel distribution
leading to probabilities as in multinomial logit modeling.

The objective function does not reflect the eventual ’utility’
of the situation to the actor, but short-time goals
following from preferences, constraints, opportunities.

← →
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The evaluation and endowment functions express how the dynamics

of the network process depends on its current state.

Evaluation function and endowment function modeled

as linear combinations of theoretically argued components

of actors’ assessment of the network.

The weights in the linear combination are the statistical parameters

(cf. regression coefficients).

The focus of modeling is first on the evaluation function;

then on the rate and endowment functions.

Example: SIENA applet.

← →
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Mini-step:

At random moments (frequency determined by rate function),

a random actor gets the opportunity

to make a change in one tie variable:

the mini-step (on ⇒ off, or off ⇒ on).

It is allowed to change nothing.

This actor tries to improve his/her objective function

and looks only on its value immediately after this mini-step

(myopia) .

← →
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This absence of strategy or farsightedness in the model

implies the definition of effects as

“what the actors try to achieve in the short run”.

All mini-steps are sequential, no coordination between actors

(such as swapping partners).

Many mini-steps can accumulate

to big differences between consecutively observed networks.

← →
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Simple model specification:

∗ The actors all change their relationships

at random moments, at the same rate ρ.

∗ Each actor tries to optimize an

objective function with respect to

the network configuration,

fi(β, x) , i = 1, ..., n, x ∈ X ,

which indicates the preference of actor i

for the relational situation represented by x;

objective function depends on parameter β.

← →
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Whenever actor i may make a change,

he changes only one relation, say xij.

The new network is denoted by x(i ; j).

(Formally denote by x(i ; i)

the network where nothing has changed: x(i ; i) = x.)

Actor i chooses the “best” j by maximizing

fi

(
β, x(i ; j)

)
+ Ui(t, x, j) .

⇑
random component

← →
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For a convenient choice of the distribution
of the random component,

(type 1 extreme value = Gumbel distribution)

given that i is allowed to make a change,
the probability that i changes his relation with j is

pij(β, x) =
exp

(
f(i, j)

)
n∑

h=1,h 6=i

exp
(
f(i, h)

) (j 6= i).

where f(i, j) = fi

(
β, x(i ; j)

)
;

the probability of no change is pii(β, x).

This is the multinomial logit form of a random utility model.

The Gumbel distribution has variance π2/6 = 1.645 and s.d. 1.28.

Skip details.

← →



⇐ Tom A.B. Snijders Evolution Social Networks 30

Intensity matrix

This specification implies that X follows a

continuous-time Markov chain with intensity matrix

qij(x) = lim
dt ↓0

P
{
X(t + dt) = x(i ; j) | X(t) = x

}
dt

(i 6= j)

given by

qij(x) = λi(α, ρ, x) pij(β, x) .

← →
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Computer simulation algorithm

for arbitrary rate function λi(α, ρ, x)

1. Set t = 0 and x = X(0).

2. Generate S according to the negative

exponential distribution with mean 1/λ+(α, ρ, x) where

λ+(α, ρ, x) =
∑
i

λi(α, ρ, x) .

3. Select randomly i ∈ {1, ..., n}
using probabilities

λi(α, ρ, x)

λ+(α, ρ, x)
.

← →
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4. Select randomly j ∈ {1, ..., n}, using probabilities pij(β, x).

5. Set t = t + S and x = x(i ; j).

6. Go to step 2

(unless stopping criterion is satisfied).

← →
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Model specification :

The objective functions fi reflect

network effects (endogenous) and covariate effects (exogenous).

Covariates can be actor-dependent: vi

or dyad-dependent: wij .

Convenient definition of objective function fi

is a weighted sum

fi(β, x) =
L∑

k=1

βk sik(x) ,

where weights βk are statistical parameters

indicating strength of effect sik(x).

← →
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Choose possible network effects for actor i, e.g.:

(others to whom actor i is tied are called here i’s ‘friends’)

1. density effect, out-degree

si1(x) = xi+ =
∑

j xij

2. reciprocity effect, number of reciprocated relations

si2(x) =
∑

j xij xji

3. popularity effect, sum of in-degrees of i’s friends

si3(x) =
∑

j xij x+j =
∑

j xij
∑

h xhj

4. activity effect, sum of the out-degrees of i’s friends

si4(x) =
∑

j xij xj+ =
∑

j xij
∑

h xjh

← →
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Three effects related to network closure:

5. transitivity effect,

number of transitive patterns in i’s relations

(i→ j, j → h, i→ h)

si5(x) =
∑

j,h xij xjh xih

• •

•

i j

h

...............................................................................................................................................................................
...............................
...............................
...................................................

...............................
...............................
...............................
...................................................

transitive triplet

6. indirect relations effect,

number of actors j to whom i is indirectly related

(through at least one intermediary: xih = xhj = 1 )

but not directly (xij = 0),

= number of geodesic distances equal to 2,

si6(x) = #{j | xij = 0, maxh(xih xhj) > 0}

← →
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7. balance or structural equivalence,

similarity between out-relations of i

with out-relations of his friends,

si7(x) =
n∑

j=1

xij

n∑
h=1
h 6=i,j

(
1− |xih − xjh|

)
,

[note that
(
1− |xih − xjh|

)
= 1 if xih = xjh,

and 0 if xih 6= xjh, so that

n∑
h=1
h 6=i,j

(
1− |xih − xjh|

)

measures agreement between i and j . ]

← →
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Differences between these three network closure effects:

⇒ transitive triplets effect:

i more attracted to j if there are

more indirect ties i→ h→ j ;

⇒ negative indirect connections effect:

i more attracted to j if there is

at least one such indirect connection ;

⇒ balance effect:

i prefers others j who make same choices as i.

Non-formalized theories usually do not distinguish

between these different closure effects.

It is possible to ’let the data speak for themselves’

and see what is the best formal representation of closure effects.

← →
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Three kinds of objective function effect

associated with actor covariate vi :

8. covariate-related popularity ,

sum of covariate over all of i ’s friends

si8(x) =
∑

j xij vj;

9. covariate-related activity ,

i’s out-degree weighted by covariate

si9(x) = vi xi+;

10. covariate-related similarity ,

sum of measure of covariate similarity

between i and his friends, e.g.

si10(x) =
∑

j xij

(
1− |vi − vj |

)
if V has values between 0 and 1.

← →
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Objective function effect for dyadic covariate wij :

11. covariate-related preference,

sum of covariate over all of i’s friends,

i.e., values of wij summed over all others to whom i is related,

si11(x) =
∑

j xij wij .

If this has a positive effect, then the value of a tie i→ j

becomes higher when wij becomes higher.

← →
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Example

Data collected by Gerhard van de Bunt:

group of 32 university freshmen,

24 female and 8 male students.

Three observations used here (t1, t2, t3) :

at 6, 9, and 12 weeks after the start of the university year.

The relation is defined as a ‘friendly relation’.

Missing entries xij(tm) set to 0

and not used in calculations of statistics.

Densities increase from 0.15 at t1 via 0.18 to 0.22 at t3 .

← →
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Very simple model: only density and reciprocity effects

Model 1

Effect par. (s.e.)

Rate t1 − t2 3.26 (0.48)
Rate t2 − t3 2.83 (0.42)

Density −1.03 (0.19)
Reciprocity 1.76 (0.27)

Overly simplistic model:

rate parameters :

actors make on average about 3 changes between observations;

density parameter negative:

on average, cost of friendly ties higher than their benefits;

reciprocity effect strong and highly significant (t = 1.76/0.27 = 6.5).

← →
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Objective function is

fi(x) =
∑
j

(
− 1.03xij + 1.76xij xji

)
.

This expresses how much actor i likes the network.

Adding a reciprocated tie (i.e., for which xji = 1) gives

−1.03 + 1.76 = 0.73.

Adding a non-reciprocated tie (i.e., for which xji = 0) gives

−1.03,

i.e., this has negative benefits.

← →
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Conclusion: reciprocated ties are valued positively,

unreciprocated ties negatively;

actors will be reluctant to form unreciprocated ties;

by ‘chance’ (the random term),

such ties will be formed nevertheless

and these are the stuff on the basis of which

reciprocation by others can start.

(Incoming unreciprocated ties, xji = 1, xij = 0 do not play a role

because for the objective function

only those parts of the network are relevant

that are under control of the actor,

so terms not depending on the outgoing relations of the actor

are irrelevant.)

← →
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More adequate structural model: also two network closure effects

Model 2

Effect par. (s.e.)

Rate t1 − t2 3.87 (0.57)
Rate t2 − t3 3.12 (0.48)

Density −1.45 (0.26)
Reciprocity 1.90 (0.33)
Transitive triplets 0.22 (0.12)
Indirect relations −0.32 (0.07)

Both network closure effects are significant

(controlling for each other!),

but negative indirect relations effect is stronger.

Skip details interpretation

← →
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For an interpretation, consider the simpler model

without the transitive triplets effect. The estimates are:

Structural model with one network closure effect

Model 3

Effect par. (s.e.)

Rate t1 − t2 3.82 (0.60)
Rate t2 − t3 3.17 (0.52)

Density −1.05 (0.19)
Reciprocity 2.43 (0.40)
Indirect relations −0.55 (0.08)

← →
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Example: Personal network of ego.

©X
ego

•

•

•

•

•

•

•A

B

C

D

E

F

G

.....................................
.....................................
.....................................
.....................................
.....................................
...........................................

....................................................................................................................................................................................................................................

.....................................
.....................................

.....................................
.....................................

.....................................
...........................................

.........................................................................................................................................................................................................................................................................
.....................................
.....................................
.....................................
.....................................
...........................................

....................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................

...........................

...........................

...........................

...........................

...........................

...........................

...........................

...........................

...........................

...........................

...........................

.....................................................................................................................................................................................................................................................................................................................................................................................

..................................
..................................
..................................
..................................
..................................
..................................
..................................
...........................................



..........................................................................................................................................................................................................................................................................................

..................................
..................................

..................................
..................................

..................................
..................................

..................................
....................................................................................................................................................................................................................................................................................................................................

out-degree xi+ = 4 ,

#{recipr. ties} = 2,

#{at distance 2} = 3.

← →
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Objective function is

fi(x) =
∑
j

(
− 1.05xij + 2.43xij xji − 0.55 (1− xij) max

h

(
xih xhj

))
(

note that
∑

j(1− xij) maxh

(
xih xhj

)
is #{indiv. at distance 2}

)

so its current value for this actor is

fi(x) = −1.05× 4 + 2.43× 2 − 0.55× 3 = −0.99.

← →
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Some options for actor i when this actor can make a ministep:

out-degree recipr. distance 2 gain

current 4 2 3

new tie to C 5 3 2 +1.93

new tie to D 5 2 2 -0.50

new tie to G 5 2 2 -0.50

drop tie to A 3 1 4 -1.93

drop tie to F 3 1 3 -1.38

drop tie to E 3 2 1 +2.15

The actor adds random influences to this (with s.d. 1.28),

and chooses the change with the best total value.

← →
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Effects of sex and program, smoking

similarity

Model 3

Effect par. (s.e.)

Rate t1 − t2 4.05 (0.66)
Rate t2 − t3 3.10 (0.47)

Density −1.55 (0.24)
Reciprocity 1.83 (0.32)
Transitive triplets 0.21 (0.11)
Indirect relations −0.30 (0.07)
Sex (M) popularity 0.57 (0.25)
Sex (M) activity −0.39 (0.27)
Sex similarity 0.35 (0.25)
Program similarity 0.38 (0.13)
Smoking similarity 0.37 (0.20)

Conclusion:

Women more active;

men more popular;

no significant

sex similarity effect.

← →
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To interpret the three effects of actor covariate gender,
it is more instructive to consider them simultaneously.
Gender was coded originally by with 0 for F and 1 for M
but this dummy variable was centered (the mean was subtracted)
which led to scores zi = −0.25 for F and +0.75 for M.
The joint effect of the gender-related effects
for the tie variable xij from i to j is

−0.39 zi + 0.57 zj + 0.35 I{zi = zj} .

i \ j F M

F 0.03 −0.02
M −0.50 0.15

Conclusion:
the gender effect is mainly, that men seem not to like female friends.

Skip extended model specification

← →
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Extended model specification

1. Gratification function / endowment effect gi(γ, x, j)

This represents the “gratification” experienced by the actor

when he makes a particular change in his relations,

rather than when he has a particular

configuration of relations.

Is used to represent models where certain effects work differently

for creation of ties (0→ 1)

than for termination of ties (1→ 0).

← →



⇐ Tom A.B. Snijders Evolution Social Networks 52

Function gi(γ, x, j) expresses the gratification for i,

when starting from the present network structure x,

as a consequence of changing his relation with j.

With this extension, actor i chooses to

make the relational change that maximizes

fi

(
β, x(i ; j)

)
+ gi(γ, x, j) + Ui(t, x, j) .

The gratification function again can be a weighted sum

gi(γ, x, j) =
H∑

h=1

γh rijh(x) .

← →
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Examples of components of gratification function:

1. γ1 xij xji

γ1 reflects benefits of breaking off a reciprocated tie

(expected to be negative).

2. γ2 (1− xij)
∑

h xih xhj

number of actors through whom i is indirectly tied to j

3. γ3 xij wij

effect of dyadic covariate wij

different for creating than for breaking a tie.

← →
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Continuation example :

Reciprocity of a relation can have different effects

for creating than for breaking a relation.

Table next page:

total effect due to reciprocity conducive to creating a tie is 1.43;

total effect due to reciprocity

conducive to breaking a tie is -1.43 - 1.21 = -2.64.

Conclusion: reciprocity works stronger for terminating

than for creating ties.

← →
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Add gratification effect of breaking reciprocated tie

Model 4

Effect par. (s.e.)

Rate t1 − t2 4.34 (0.71)
Rate t2 − t3 3.20 (0.51)

Density −1.60 (0.24)
Reciprocity 1.43 (0.39)
Transitive triplets 0.21 (0.11)
Indirect relations −0.29 (0.07)
Sex (M) popularity 0.53 (0.24)
Sex (M) activity −0.48 (0.27)
Sex similarity 0.34 (0.26)
Program similarity 0.39 (0.14)
Smoking similarity 0.41 (0.19)

Breaking reciprocated tie −1.21 (0.46)

Skip non-constant rate function

← →
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Extended model specification

2. Non-constant rate function λi(α, x) .

This means that some actors change their relations

more quickly than others,

depending on covariates or network position.

Dependence on covariates:

λi(α, x) = exp(
∑
h

αh vhi) .

(Note that rate function must be positive; ⇒ exponential function.)

← →
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Dependence on network position:

e.g., dependence on in- and out-degrees:

λi(α, x) = xi+ exp(α1) + (n− 1− xi+) exp(−α1) .

Also, ] reciprocated relations of actor i may be used.

Now the parameter is θ = (ρ, α, β, γ).

← →
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Continuation example

Rate function depends on out-degree:

those with higher out-degrees

also change their tie patterns more quickly.

Gratification function depends on tie recipration

and gender dissimilarity:

gi(γ, x, j) = γ1 xij xji + γ2 xij | wi − wj |

Reciprocity and gender dissimilarity operate differently

for tie initiation than for tie withdrawal.

← →
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Parameter estimates model with rate and gratification effects

Model 4

Effect par. (s.e.)

Rate (period 1) 5.05
Rate (period 2) 3.95
Out-degree effect on rate 0.90 (0.47)

Density -0.99 (0.20)
Reciprocity 2.82 (0.56)
Indirect relations -0.508 (0.091)
Gender activity -0.52 (0.31)
Gender popularity 0.55 (0.30)
Gender similarity -0.08 (0.37)

Breaking recipr. relation -0.58 (1.06)
Breaking relation with
different-gender other 1.64 (0.62)

← →
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Conclusion:

weak evidence that actors with higher out-degrees
tend to change their relations more often
(t = 0.90/0.47 = 1.91),

ties with others of the other sex terminated more quickly
than ties with others of the same sex
(t = 1.64/0.62 = 2.65).

no evidence that effect of reciprocation on tie creation
differs from the negtiave of its effect on tie formation.

Further continuation example

Add effect out-degrees on rate of change
and also gratification effect of sex dissimilarity
(representing that sex similarity may have different effects
for creating than for terminating ties)
(other dissimilarity variables had no significant effects).

← →
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Model 5

Effect par. (s.e.)

Rate t1 − t2 5.40 (0.82)
Rate t2 − t3 4.06 (0.63)
Out-degrees effect on rate 0.82 (0.52)

Density −1.44 (0.25)
Reciprocity 1.76 (0.43)
Transitive triplets 0.18 (0.12)
Indirect relations −0.30 (0.07)
Sex (M) popularity 0.51 (0.28)
Sex (M) activity −0.37 (0.28)
Sex similarity 0.10 (0.38)
Program similarity 0.41 (0.13)
Smoking similarity 0.39 (0.19)

Breaking reciprocated tie −0.49 (0.47)
Breaking tie with other sex 1.39 (0.66)

← →
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Conclusion:

gratification effect breaking reciprocated tie becomes non-significant,

is taken over for gratification effect dissimilar sex tie.

Deleting (most) non-significant effects one by one

leads to following model.

← →
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Parsimonious model

Model 6

Effect par. (s.e.)

Rate t1 − t2 4.17 (0.69)
Rate t2 − t3 3.18 (0.53)

Density −1.52 (0.26)
Reciprocity 1.70 (0.36)
Transitive triplets 0.22 (0.11)
Indirect relations −0.28 (0.07)
Sex (M) popularity 0.54 (0.23)
Sex similarity 0.01 (0.35)
Program similarity 0.40 (0.13)
Smoking similarity 0.35 (0.19)

Breaking tie with other sex 1.35 (0.61)

Final conclusion:
men are more popular; different-sex ties are less stable.

← →
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Non-directed networks

The actor-driven modeling is less straightforward

for non-directed relations,

because two actors are involved in deciding about a tie.

Various modeling options are possible:

1. Forcing model:

one actor takes the initiative and unilaterally imposes

that a tie is created or dissolved.

← →
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2. Unilateral initiative with reciprocal confirmation:

one actor takes the initiative and proposes a new tie

or dissolves an existing tie;

if the actor proposes a new tie, the other has to confirm,

otherwise the tie is not created.

3. Pairwise conjunctive model:

a pair of actors is chosen and reconsider whether a tie

will exist between them; a new tie is formed if both agree.

4. Pairwise disjunctive (forcing) model:

a pair of actors is chosen and reconsider whether a tie

will exist between them;

a new tie is formed if at least one wishes this.

← →
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5. Pairwise compensatory (additive) model:

a pair of actors is chosen and reconsider whether a tie

will exist between them; this is based

on the sum of their utilities for the existence of this tie.

Option 1 is close to the actor-driven model for directed relations.

In options 3–5, the pair of actors (i, j) is chosen

depending on the product of the rate functions λi λj

(under the constraint that i 6= j ).

The numerical interpretation of the ratio function

differs between options 1–2 compared to 3–5.

The decision about the tie is taken on the basis of the objective

functions fi fj of both actors.

← →
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Statistical estimation

Suppose that at least 2 observations on X(t) are available,

for observation moments t1, t2.

How to estimate θ?

Condition on X(t1) :

the first observation is accepted as given,

contains in itself no observation about θ.

No assumption of a stationary network distribution.

← →
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Method of moments :

choose a suitable statistic Z = (Z1, . . . , ZK),

i.e., K variables which can be calculated from the network;

the statistic Z must be sensitive to the parameter θ

in the sense that higher values of θk

lead to higher values of the expected value E
θ̂
(Zk) ;

determine value of θ = (ρ, β) for which

observed and expected values of suitable statistic are equal.

← →
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Questions:

∗ What is a suitable (K-dimensional) statistic?

Corresponds to objective function.

∗ How to find this value of θ?

By stochastic approximation (Robbins-Monro process)

based on repeated simulations of the dynamic process,

with parameter values

getting closer and closer to the moment estimates.

Skip details.

← →
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Suitable statistics for method of moments

Assume first that λi(x) = ρ = θ1,

and 2 observation moments.

This parameter determines the expected “amount of change”.

A sensitive statistic for θ1 = ρ is

C =
n∑

i, j=1
i6=j

| Xij(t2)−Xij(t1) | ,

the “observed total amount of change”.

← →
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For the weights βk in the objective function

fi(β, x) =
L∑

k=1

βk sik(x) ,

a higher value of βk means that all actors

strive more strongly after a high value of sik(x),

so sik(x) will tend to be higher for all i, k.

This leads to the statistic

Sk =
n∑

i=1

sik(X(t2)) .

This statistic will be sensitive to βk :

a high βk will to lead to high values of Sk.

← →
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Moment estimation will be based on the

vector of statistics

Z = (C, S1, ..., SK−1) .

Denote by z the observed value for Z.

The moment estimate θ̂ is defined as the parameter value

for which the expected value of the statistic

is equal to the observed value:

E
θ̂
{Z} = z .

← →
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Robbins-Monro algorithm

The moment equation cannot be solved by

analytical or the usual numerical procedures, because

Eθ{Z}

cannot be calculated explicitly.

However, the solution can be approximated by the

Robbins-Monro (1951) method for stochastic approximation.

Iteration step:

θ̂N+1 = θ̂N − aN D−1(zN − z) , (1)

where D is a suitable matrix,

and zN is a simulation of Z with parameter θ̂N ,

and aN is a sequence aN → 0 .

← →
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How to choose matrix D?

Ruppert (1988) and Polyak (1990) proposed

that (under certain conditions)

D can be a positive diagonal matrix

if θ is estimated not by the last value θ̂N(max)

but by the average of the sequence θ̂N

(
N = 1, . . . , N(max)

)
.

Pflug (1990) proposed

to keep aN constant during the iterations

until a certain convergence criterion is satisfied,

and decrease it only then.

← →
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Covariance matrix

The method of moments yields the covariance matrix

cov(θ̂) ≈ D−1
θ Σθ D′θ

−1

where

Σθ = cov{Z |X(t1) = x(t1)}

Dθ =
∂

∂θ
E{Z |X(t1) = x(t1)} .

(Note: Z is function of X(t1) and X(t2)).

← →
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After the presumed convergence of the algorithm

for approximately solving the moment equation,

extra simulations are carried out

(a) to check that indeed E
θ̂
{Z} ≈ z ,

(b) to estimate Σθ,

(c) and to estimate Dθ

using a score function algorithm

(earlier algorithm used

difference quotients and common random numbers).

Skip conditional estimation

← →
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Modified estimation method:

conditional estimation .

Condition on the observed numbers of

differences between successive observations,

cm =
∑
i,j

| xij(tm+1)− xij(tm) | .

← →
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For continuing the simulations do not mind the values of

the time variable t,

but continue between tm and tm+1 until

the observed number of differences∑
i,j

| Xij(t)− xij(tm) |

is equal to the observed cm .

This is defined as time moment tm+1 .

This procedure is a bit more stable;

requires modified estimator of ρm .

← →
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Summary of estimation algorithm

3 phases:

1. brief phase for preliminary estimation of ∂E
θ̂
{Z}/∂θ

for defining D;

2. estimation phase with Robbins-Monro updates,

where aN remains constant in subphases

and decreases between subphases;

3. final phase where θ remains constant at its estimated value;

this phase is for checking that

E
θ̂
{Z} ≈ z ,

and for estimating Dθ and Σθ to calculate standard errors.

← →
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The procedure is implemented in the program

S imulation
I nvestigation for
E mpirical
N etwork
A nalysis

(new beta version 2.4) which can be downloaded from
http://stat.gamma.rug.nl/snijders/siena.html

(programmed by Tom Snijders, Christian Steglich,
Michael Schweinberger, Mark Huisman).

A Windows shell is contained in the StOCNET package
(new version 1.7)
developed by Peter Boer
(contributions by Bert Straatman, Evelien Zeggelink,
Mark Huisman, Christian Steglich)

http://stat.gamma.rug.nl/stocnet/

← →
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Further explanation :

Tom A.B. Snijders,
“The Statistical Evaluation of Social Network Dynamics”.
Sociological Methodology 2001, 361–395;

—, “Models for Longitudinal Network Data”.
Ch. 11 in P. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods
in social network analysis.
New York: Cambridge University Press (2005).

Mark Huisman and Tom A.B. Snijders,
“Statistical analysis of longitudinal network data with changing composition”.
Sociological Methods & Research, 32 (2003), 253-287.

—, “Een stochastisch model voor netwerkevolutie”.
Nederlands Tijdschrift voor de Psychologie, 58 (2003), 182-194.

SIENA manual.

← →
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2. Networks as dependent & independent variables

Simultaneous endogenous dynamics of networks and behavior: e.g.,

∗ individual humans & friendship relations:

attitudes, behavior (lifestyle, health, etc.)

∗ individual humans & cooperation relations:

work performance

∗ companies / organisations & alliances, cooperation:

performance, organisational success.

← →
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Two-way influence between networks and behavior

Relational embeddedness is important

for well-being, behavior, opportunities, etc.;

cf. studies of social capital.

Also, actors are influenced in their behavior and attitudes

by other actors to whom they are tied

(e.g., N. Friedkin, A Structural Theory of Social Influence, C.U.P., 1998).

← →
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In addition, many types of tie

(friendship, cooperation, liking, etc.)

are influenced positively by

similarity on relevant attributes: homophily

(e.g., McPherson, Smith-Lovin, & Cook, Ann. Rev. Soc., 2001.)

More generally, actors choose relation partners

on the basis of their behavior and other characteristics

(similarity, opportunities for future rewards, etc.).

Influence, network effects on behavior;

Selection, behavior effects on relations.

Skip extra discussion

← →
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Terminology:

relation = network = pattern of ties in group of actors;

behavior = any individual-bound changeable attribute

(including attitudes, performance, etc.).

Relations and behaviors are endogenous variables

that develop in a simultaneous dynamics.

← →
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Examples:

⇒ Risky social behaviors (like smoking, taking alcohol or drugs)

are ’contagious’ among friends but also

operative in friendship formation.

⇒ How hard pupils and employees work

often is subject to social control.

⇒ Firms choose partners for collaboration

based on complementary expertise, reputation, trust, etc.

Thus, there is a feedback relation in the dynamics

of relational networks and actor behavior / performance.

← →



⇐ Tom A.B. Snijders Evolution Social Networks 87

The investigation of such social feedback processes is difficult:

∗ Both the network ⇒ behavior

and the behavior ⇒ network effects

lead to an association between current behavior and network:

“friends of smokers are smokers” (cf. work by Baumann, Kirke),

“high-reputation firms don’t collaborate

with low-reputation firms”.

It is hard to ascertain the strengths

of the causal relations in the two directions.

∗ For many phenomena

quasi-continuous longitudinal observation is infeasible.

Instead, it may be possible to observe networks and behaviors

at a few discrete time points.

Such an observation design is the point of departure here.

← →
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Data:

One bounded set of actors

(e.g. school class, group of professionals, set of firms);

several observation moments (at least 3);

for each observation moment:

⇒ network: who is tied to whom

⇒ behavior of all actors

Aim: disentangle effects networks ⇒ behavior

from effects behavior ⇒ networks.

← →



⇐ Tom A.B. Snijders Evolution Social Networks 89

Statistical Methodology for the simultaneous evolution

of networks X(t) and behavior Z(t).

Integrate the influence (network ⇒ characteristics)

and selection (characteristics ⇒ network) processes.

Notation:

In addition to the network X, associated to each actor i

there is a vector Zi(t) of actor characteristics

indexed by h = 1, . . . , H.

For the moment: ordered discrete

(simplest case: one dichotomous variable).

← →
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Actor-driven models :

each actor “controls” not only his outgoing ties,

collected in the row vector
(
Xi1(t), ..., Xin(t)

)
,

but also his behavior Zi(t) =
(

Zi1(t), ..., ZiH(t)
)

(H is the number of dependent behavior variables).

Network change process and behavior change process

run simultaneously, and influence each other

being each other’s changing constraints.

← →
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At stochastic times

(rate functions λX for changes in network,

λZ
h for changes in behavior h),

the actors may change a tie or a behavior.

The actors try to attain a rewarding configuration

of the network and the behaviors

expressed in objective functions fX and fZ .

Again, conditional independence,

given the current network structure.

Functions λX , λZ , fX , and fZ depend on

K-dimensional statistical parameter θ ∈ Θ ⊂ IRK.

Skip details

← →
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Mini-step for change in network:

At random moments occurring at a rate λX,

a random actor is designated to make a change in one tie variable:

the mini-step (on ⇒ off, or off ⇒ on.)

Mini-step for change in behavior:

At random moments occurring at a rate λZ
h,

a random actor is designated to make a change in behavior h

(one component of Zi, assumed to be ordinal):

the mini-step is a change to an adjacent category.

Again, many mini-steps can accumulate to big differences

between consecutive observations.

← →
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When actor i ‘may’ change an outgoing tie to some other actor j,

he/she chooses the ’best’ j by maximizing

the objective function fX
i (β, X, z) of the situation obtained

after the coming network change

plus a random component representing unexplained influences;

and when this actor ‘may’ change behavior h,

he/she chooses the “best” change (up, down, nothing)

by maximizing the objective function fZ
i (β, x, Z) of the situation

obtained after the coming behavior change

plus a random component representing unexplained influences.

← →
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The new network is denoted by x(i ; j).

The attractiveness of the new situation

(objective function plus random term)

is expressed by the formula

fX
i (β, x(i ; j), z) + UX

i (t, x, j) .

⇑
random component

(Note that the network is also permitted to stay the same.)

← →
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Whenever actor i may make a change in variable h of Z,

he changes only one behavior, say zih , to the new value v.

The new vector is denoted by z(i, h ; v).

Actor i chooses the “best” h, v by maximizing

the objective function of the situation obtained

after the coming behavior change

plus a random component representing unexplained influences:

fZ
i (β, x, z(i, h ; v)) + UZ

i (t, z, h, v) .

⇑
random component

(behavior is permitted to stay the same.)

← →
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For the behaviors, the formula of the change probabilities is

pihv(β, z) =
exp(f(i, h, v))∑

k,u

exp(f(i, k, u))

where

f(i, h, v) = fZ
i (β, z(i, h ; v)) .

Again, multinomial logit form.

← →
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Specification of the behavior model

There are many different reasons

why networks are important for behavior:

1. social capital :

individuals may use resources of others;

2. coordination :

individuals can achieve some goals only by concerted behavior;

3. imitation :

individuals imitate others

(basic drive; uncertainty reduction).

In this presentation, only imitation is considered,

but the other two reasons are also of eminent importance.

← →
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Basic effects for dynamics of behavior fZ
i :

fZ
i (β, x, z) =

L∑
k=1

βk sik(x, z) ,

1. tendency ,

si1(x, z) = zih

2. covariate-related similarity ,

sum of covariate similarities

between i and his friends

si2(x, z) =
∑

j xij

(
1−|zih − zjh |

)
,

if Zh assumes values between 0 and 1.

← →
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3. popularity-related tendency ,

si3(x, z) = zih x+i ;

4. activity-related tendency ,

si4(x, z) = zih xi+ ;

5. dependence on other behaviors (h 6= h′) ,

si5(x, z) = zih zih′

For both the network and the behavior dynamics,

extensions are possible depending on the network position.

← →
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Now focus on the similarity effect in objective function :

sum of absolute covariate differences between i and his friends

si2(x, z) =
∑

j xij

(
1−|zih − zjh |

)
.

This is fundamental both to network selection based on attributes,

and to behavior change based on network position.

← →
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A positive coefficient for this effect means that the actors

prefer friends with similar Zh values

(network autocorrelation).

Actors can attempt to attain this by changing their own

Zh value to the average value of their friends

(network influence, contagion),

or by becoming friends with those with similar Zh values

(selection on similarity).

Skip details

← →
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A comparison of these two ways of change can give us some insight

into the question whether the objective functions fX and fZ

should be the same.

In the first place, note that a common purpose for the network

and the individual behavior does not imply that the coefficients

βX
k and βZ

k should be the same:

the random utility formulation compares all effects

with each other and with all unmeasured effects (random term),

and this random influence might be larger

for changes in networks than for changes in behaviors.

Therefore, the question is whether

the two sets of coefficients are proportional.

← →
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Consider two behaviors Z1 and Z2 ,

for both of which the actors prefer positive network autocorrelation.

It is very wel conceivable that actors attempt to reach this

by network changes for Z1 and behavior changes for Z2 .

E.g., for a friendship relation:

let Z1 be religion and Z2 musical taste.

E.g., for cooperation between firms:

let Z1 be location and Z2 administrative organization.

Since the functions fX and fZ

express the trade-off between rewards and costs,

even when the rewards are the same,

the costs of change may well be different.

← →
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Statistical estimation

Procedures for estimating parameters in this model

are analogous to estimation procedures for network-only dynamics:

Methods of Moments & Stochastic Approximation,

conditioning on the first observation X(t1), Z(t1) .

The two different effects,

networks ⇒ behavior and behavior ⇒ networks,

both lead to

a contemporaneous network autocorrelation of behavior;

but they can be (in principle)

distinguished empirically by the time order: respectively

association between ties at tm and behavior at tm+1;

and association between behavior at tm and ties at tm+1.

← →
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Statistics for use in method of moments:

for estimating parameters in network dynamics:

M−1∑
m=1

n∑
i=1

sik(X(tm+1), Z(tm)) ,

and for the behavior dynamics:

M−1∑
m=1

n∑
i=1

sik(X(tm), Z(tm+1)) .

← →



⇐ Tom A.B. Snijders Evolution Social Networks 106

Example :

Study of smoking initiation and friendship

in a Scottish secondary school

(following up on earlier work by P. West, M. Pearson & others,

see Pearson & Michell, Drugs: educ., prev. and policy, 2000.)

One school year group from a Scottish secondary school

starting at age 12-13 years,

was monitored over 3 years, 129 pupils present at all 3 observations,

with sociometric & behavior questionnaires

at three moments, at appr. 1 year intervals.

What does this data set tell us about the mutual effects

between friendship and smoking?

← →
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First, results for a model

for dynamics in networks and in smoking behavior

under the assumption that both are unrelated.

Smoking measured in three categories:

1 = no, 2 = occasionally, 3 = regularly.

There is more network change than behavior change;

⇒ more power for discovering effects acting on network dynamics.

In this group, girls smoke more than boys.

← →
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Parameter estimates for network dynamics:

assumed independent of smoking.

Effect Estimate Standard error

Rate function

λX
0 Rate parameter t1–t2 11.63 1.42

λX
1 Rate parameter t2–t3 9.27 0.96

Objective function

βX
1 Density / out-degree −2.16 0.06

βX
2 Reciprocity 2.03 0.08

βX
3 Number of distances 2 −0.68 0.014

βX
4 Transitive triplets 0.22 0.011

βX
5 Gender (F) popularity −0.23 0.08

βX
6 Gender (F) activity 0.17 0.08

βX
7 Gender similarity 0.82 0.11

← →
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Parameter estimates for smoking dynamics:

assumed independent of friendship.

Effect Estimate Standard error

Rate function

λZ
0 Rate parameter t1–t2 0.68 0.22

λZ
1 Rate parameter t2–t3 0.72 0.24

Objective function

βZ
1 Tendency −0.26 0.24

βZ
2 Gender (F) 2.05 1.16

βZ
3 Parents’ smoking 0.70 1.20

← →
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Now a similar analysis,

but with a model in which there is a mutual effect

between smoking and friendship formation.

← →
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Parameter estimates for network dynamics:

dependent on smoking.

Effect Estimate Standard error

Rate function

λX
0 Rate parameter t1–t2 11.74 1.25

λX
1 Rate parameter t2–t3 9.53 1.07

Objective function

βX
1 Density / out-degree −2.17 0.05

βX
2 Reciprocity 2.06 0.08

βX
3 Number of distances 2 −0.80 0.013

βX
4 Transitive triplets 0.17 0.009

βX
5 Gender (F) popularity −0.20 0.08

βX
6 Gender (F) activity 0.18 0.08

βX
7 Gender similarity 0.80 0.09

βX
8 Smoking similarity 0.17 0.05

← →
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Parameter estimates for smoking dynamics:

dependent on friendship.

Effect Estimate Standard error

Rate function

λZ
0 Rate parameter t1–t2 0.84 0.30

λZ
1 Rate parameter t2–t3 0.84 0.27

Objective function

βZ
1 Tendency 0.13 0.35

βZ
2 Gender (F) 1.26 1.14

βZ
3 Parents’ smoking 1.00 1.28

βZ
4 Friendship 0.33 0.37

← →
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Conclusions :

Evidence for effect of smoking on friendship development;

no evidence for effect of friendship on smoking initiation;

note that

taking the mutual effect of smoking and friendship into account

(even though the effect friendship ⇒ smoking was not significant)

reduces strongly the estimated effect of gender:

in the first analysis

there seemed some evidence for a gender effect on smoking,

but this can equally be explained as an effect of friendship

(friendship is rather gender-homogeneous).

← →
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Discussion issues
⇒ the fit of these models

and the robustness of the conclusions;

⇒ to what extent is this causal modeling?

very modest claims: “as if” approach,

we are describing data & testing substantive theories

using models that express causality;

effects of explanatory variables are ‘maximally’ controlled

for structural network effects;

⇒ richer modeling of network effects is important:

e.g., of network positions of individual actors

(cf. Pearson & West, Connections, 2003.)

← →
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Further points (current & future work) :

1. Goodness of fit (paper Michael Schweinberger).

2. Maximum likelihood and Bayesian estimation.

3. Explained variation (‘R2’) (paper Tom Snijders).

4. Non-directed relations.

5. Random actor effects.

6. Random effects multilevel network models.

7. Relations with more than 2 ordered values.

8. Multivariate relations.

9. Fit diagnostics.

← →


